用pytorch的MultiheadAttention
时间: 2023-07-12 07:29:30 浏览: 209
MultiheadAttention是PyTorch提供的一个模块,可以用来实现多头注意力机制。它可以将一个输入序列分成多个头,每个头进行注意力计算,并将多个头的输出进行拼接和线性变换,得到最终的输出。使用MultiheadAttention需要以下步骤:
1.定义MultiheadAttention模块:
```
import torch.nn as nn
class MultiheadAttention(nn.Module):
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1):
super(MultiheadAttention, self).__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
self.dropout = nn.Dropout(dropout)
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, q, k, v, mask=None):
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b, len_q, _ = q.size()
sz_b, len_k, _ = k.size()
sz_b, len_v, _ = v.size()
residual = q
# project inputs to multi-heads
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k)
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
# transpose to prepare for softmax
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
# calculate attention scores
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
# apply softmax to get attention probabilities
attn = nn.Softmax(dim=-1)(scores)
attn = self.dropout(attn)
# apply attention probabilities to values
output = torch.matmul(attn, v)
# concatenate multi-heads and apply output projection
output = output.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
output = self.fc(output)
# add residual and apply layer normalization
output = self.layer_norm(output + residual)
return output, attn
```
2.使用MultiheadAttention模块:
```
import torch
# define inputs
q = torch.randn(2, 4, 128) # query
k = torch.randn(2, 6, 128) # key
v = torch.randn(2, 6, 128) # value
# define MultiheadAttention module
attn = MultiheadAttention(n_head=8, d_model=128, d_k=16, d_v=16)
# apply MultiheadAttention
output, attn_weights = attn(q, k, v)
# output shape: [2, 4, 128]
# attn_weights shape: [2, 8, 4, 6]
```
阅读全文