构造如下非平稳信号signal ,采用希尔伯特变换求出瞬时 相位和瞬时频率。 y=sin(2*pi*10*t)+cos(2*pi*25*t)

时间: 2023-11-14 17:52:59 浏览: 44
首先,这个信号可以写成幅度调制的形式,即: y(t) = sin(2π10t)cos(2π25t) = (1/2)[sin(2π(25+10)t) + sin(2π(25-10)t)] 因此,我们可以构造一个包含这两个正弦波的信号,如下所示: signal = sin(2π10t) + sin(2π25t) 然后,我们可以使用希尔伯特变换来计算此信号的瞬时相位和瞬时频率。 步骤如下: 1. 对信号进行希尔伯特变换,得到其解析信号: z(t) = signal + jH(signal) 其中,H(signal)表示信号的希尔伯特变换。 2. 从解析信号中提取出瞬时振幅和瞬时相位: a(t) = |z(t)| φ(t) = arg(z(t)) 其中,|z(t)|表示解析信号的幅度,arg(z(t))表示解析信号的相位。 3. 计算瞬时频率: f(t) = (1/2π) dφ(t)/dt 其中,dφ(t)/dt表示相位的时间导数。 最终,我们可以得到信号的瞬时相位和瞬时频率函数。
相关问题

构造如下非平稳信号signal ,采用希尔伯特变换求出瞬时 相位和瞬时频率。 y=sin(2*pi*10*t)+cos(2*pi*25*t)相关程序

import numpy as np import matplotlib.pyplot as plt # 构造信号 t = np.linspace(0, 1, 1000) signal = np.sin(2*np.pi*10*t) * np.cos(2*np.pi*25*t) # 希尔伯特变换 analytic_signal = np.imag(scipy.signal.hilbert(signal)) instantaneous_phase = np.unwrap(np.angle(analytic_signal)) instantaneous_frequency = np.diff(instantaneous_phase)/(2*np.pi)*1000 # 绘图 fig, (ax0, ax1, ax2) = plt.subplots(nrows=3, sharex=True, figsize=(8,8)) ax0.plot(t, signal, label='Signal') ax0.set_ylabel('Amplitude') ax1.plot(t, instantaneous_phase, label='Instantaneous phase') ax1.set_ylabel('Phase (rad)') ax1.legend() ax2.plot(t[:-1], instantaneous_frequency, label='Instantaneous frequency') ax2.set_ylabel('Frequency (Hz)') ax2.set_xlabel('Time (s)') ax2.legend() plt.show()

用python实现希尔伯特变换求信号瞬时相位和瞬时频率

以下是使用Python实现希尔伯特变换求信号瞬时相位和瞬时频率的示例代码: ```python import numpy as np import scipy.signal as sig # 生成测试信号 t = np.linspace(0, 1, 1000) x = np.sin(2 * np.pi * 10 * t) + np.sin(2 * np.pi * 20 * t) # 计算希尔伯特变换 ht = sig.hilbert(x) inst_amplitude = np.abs(ht) inst_phase = np.unwrap(np.angle(ht)) inst_freq = np.diff(inst_phase) / (2 * np.pi) * fs # 绘制结果 import matplotlib.pyplot as plt fig, axs = plt.subplots(3, 1, sharex=True) axs[0].plot(t, x, label='原始信号') axs[0].plot(t, inst_amplitude, label='瞬时幅值') axs[0].legend() axs[1].plot(t, inst_phase, label='瞬时相位') axs[1].legend() axs[2].plot(t[:-1], inst_freq, label='瞬时频率') axs[2].legend() plt.show() ``` 在该示例代码中,我们首先生成了一个测试信号,它由两个正弦波叠加而成,频率分别为10Hz和20Hz。然后,我们使用`scipy.signal`库中的`hilbert`函数计算了该信号的希尔伯特变换。接着,我们从希尔伯特变换中提取出了瞬时幅值、瞬时相位和瞬时频率,并将它们绘制在了三个子图中。最后,我们使用`plt.show()`函数将结果显示出来。 需要注意的是,瞬时频率的计算需要对瞬时相位进行求导。由于瞬时相位在每个周期末尾可能会出现突变,因此我们需要使用`np.unwrap`函数对其进行去突变处理,以保证求导的准确性。此外,由于求导会使数据长度减少1,因此我们在计算瞬时频率时需要对时间轴进行截取。

相关推荐

最新推荐

recommend-type

基于Matlab的FIR型希尔伯特变换器设计

在通信系统中,希尔伯特变换是被广泛应用的重要变换。为了实现数字解调,通常需要借助...通过具体的设计、仿真及对原始信号和经过希尔伯特变换器输出延迟信号的比较,说明Matlab是一个在滤波器设计方面很有力的工具。
recommend-type

hht(希尔伯特黄变换)信号处理

采用hht算法进行信号处理的典型例题,hht(希尔伯特黄变换)属于先进信号处理技术,1998年,Norden E. Huang(黄锷:中国台湾海洋学家)等人提出了经验模态分解方法,并引入了Hilbert谱的概念和Hilbert谱分析的方法
recommend-type

248ssm-mysql-jsp 校园外卖管理系统.zip(可运行源码+数据库文件+文档)

此次设计的外卖订单管理系统的登录角色一共分为四个,消费者、商户、管理员以及骑手。设计的系统为前端网页和后台管理系统。 消费者主要有以模块的需求:(1)购物车,(2)订单中心,(3)收藏夹,(4)收货地址,(5)个人信息管理,(6)站内咨询浏览,(7)在线留言。 商户的用例包括了一下几个模块设计:(1)商品管理,(2)库存管理,(3)订单管理,(4)销量统计,(5)收藏统计(6)销售额统计,(7)订单量统计 管理员系统结构中的功能设计比较多,分为三个大类分别是基础信息、业务功能和统计信息,基础信息主要是对消费者、商户以及骑手进行信息的维护工作,维护网站内的资讯信息等。业务功能是对网站内的商家进行分类管理,对于商品以及库存进行管理,对订单进行管理以及留言管理。统计信息包括对于商品销量的统计、订单走势图的分析等。 此次使用了java web技术线进行网页端的开发,开发工具采用idea.工具,数据库采用了MySQL进行设计开发,服务器采用了Tomcat服务器技术。该网站系统能够将学校周围商家的外卖产品在网站上向用户进行展示
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向

![:YOLO目标检测算法的挑战与机遇:数据质量、计算资源与算法优化,探索未来发展方向](https://img-blog.csdnimg.cn/7e3d12895feb4651b9748135c91e0f1a.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBA5rKJ6YaJ77yM5LqO6aOO5Lit,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. YOLO目标检测算法简介 YOLO(You Only Look Once)是一种