myModel.save('my_cnn_lstm_model1.h5')下次如何调用这个modle
时间: 2024-01-24 22:17:46 浏览: 80
要调用已经保存的模型,可以使用`load_model()`函数。以下是一个例子:
```python
from tensorflow import keras
# 加载模型
model = keras.models.load_model('my_cnn_lstm_model1.h5')
# 使用模型进行预测
predictions = model.predict(input_data)
```
在上面的代码中,`load_model()`函数会从文件中加载保存的模型,然后你可以像平常一样使用它进行预测。当你使用已经训练好的模型时,不需要再重新训练,只需要加载模型即可。
相关问题
import tensorflow as tf import my_cnn_lstm_model # 导入你自己定义的模型 # 加载模型的权重 model = MyModel() model.load_weights('my_cnn_lstm_model1.h5') # 进行预测 data= data[["本车速度",'车头间距',"原车道前车速度"]] data = data.dropna() print(data.tail())
这段代码的作用是加载你自己定义的 CNN-LSTM 模型,并使用这个模型进行预测。具体来说,代码首先导入 TensorFlow 库和你自己定义的模型,然后调用 `MyModel()` 函数创建一个空的模型对象 `model`。接着,代码调用 `load_weights()` 方法将预先训练好的模型权重从文件 `my_cnn_lstm_model1.h5` 中加载到模型中。
最后,代码使用 `data` 变量存储输入数据,并通过 `dropna()` 方法删除其中包含缺失值的行。最后,通过 `print()` 函数输出 `data` 变量中的最后五行数据。这个过程中,你需要确保 `data` 变量中的数据格式与模型的输入格式相匹配。
# 加载模型 my_model = myModel() my_model.eval() params_file_path = './mnist_predict_model.pdparams' param_dict = paddle.load(params_file_path) my_model.load_dict(param_dict) test_loader = load_data('valid') results=[] for batch_id, data in enumerate(test_loader()): # 准备数据 images, labels = data images = paddle.to_tensor(images) labels = paddle.to_tensor(labels) # 预测 predicts = my_model(images) acc = fluid.layers.accuracy(input=predicts, label=labels) for pred in predicts: results.append(np.argmax(pred)) #转化测试结果,输出是每种类别的概率,取概率最大的类别作为该图片的预测结果
这段代码是使用PaddlePaddle框架对一个已经训练好的模型进行测试,使用的是MNIST数据集。具体流程如下:
1. 加载模型:创建一个`myModel`实例,并加载预训练好的参数。
2. 准备数据:使用`load_data`函数加载验证集数据,并将数据转换为PaddlePaddle框架可用的张量格式。
3. 预测:将测试数据输入模型,得到预测结果。使用`fluid.layers.accuracy`函数计算预测准确率,并将每张图片的预测结果保存到`results`列表中。
4. 输出预测结果:将模型的预测结果转换为最终的分类标签,并输出预测结果。
需要注意的是,这个模型的预测结果是每个类别的概率分布,所以需要使用`np.argmax`函数取概率最大的类别作为该图片的预测结果。
阅读全文