class Mymodel(Model): def __init__(self): super(Mymodel, self).__init__()这是什么语法
时间: 2024-04-27 07:20:27 浏览: 132
这段代码是 Python 中的类继承和初始化的语法。在这里,`Mymodel` 类继承了 `Model` 类,`Model` 是一个父类或者基类。通过 `super(Mymodel, self).__init__()` 这段代码,子类 `Mymodel` 调用了父类 `Model` 的初始化方法。
`super()` 是一个内置函数,用于调用父类的方法。在这里,`super(Mymodel, self)` 表示调用 `Mymodel` 的父类 `Model`,然后通过 `.__init__()` 调用了父类的初始化方法。这样做的目的是在子类初始化时,也能执行父类的初始化操作。
通过这种方式,子类可以继承父类的属性和方法,并且可以在自己的初始化方法中添加额外的逻辑。
相关问题
举例调用下面的方法 : class MultiHeadAttention(tf.keras.layers.Layer): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() self.num_heads = num_heads self.d_model = d_model assert d_model % self.num_heads == 0 self.depth = d_model // self.num_heads self.query_dense = tf.keras.layers.Dense(units=d_model) self.key_dense = tf.keras.layers.Dense(units=d_model) self.value_dense = tf.keras.layers.Dense(units=d_model) self.dense = tf.keras.layers.Dense(units=d_model)
假设你已经定义了一个名为 `model` 的神经网络模型,其中包含了 `MultiHeadAttention` 层,你可以使用下面的方法来调用这个层:
```
import tensorflow as tf
# 定义模型
class MyModel(tf.keras.Model):
def __init__(self):
super(MyModel, self).__init__()
self.multi_head_attention = MultiHeadAttention(d_model=64, num_heads=8)
def call(self, inputs):
# 调用 MultiHeadAttention 层
x = self.multi_head_attention(inputs)
return x
# 初始化模型
model = MyModel()
# 输入数据
inputs = tf.random.normal(shape=(32, 10, 64))
# 调用模型
outputs = model(inputs)
# 输出结果
print(outputs.shape)
```
在上面的代码中,我们首先定义了一个名为 `MyModel` 的神经网络模型,并在其中实例化了一个 `MultiHeadAttention` 层。然后,我们创建了一个 `model` 对象,该对象是 `MyModel` 的实例。接着,我们使用 `tf.random.normal()` 方法生成了一个形状为 `(32, 10, 64)` 的张量作为输入数据,然后将其传递给模型的 `call()` 方法,得到了模型的输出结果。最后,我们打印出了输出结果的形状。
Focal loss代码如下:class FocalLoss(nn.Module): def init(self, alpha=1, gamma=2, weight=None): super(FocalLoss, self).init() self.alpha = alpha self.gamma = gamma def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: log_probs = F.log_softmax(x, dim=-1) probs = torch.exp(log_probs) focal_loss = -self.alpha * (torch.pow((1 - probs), self.gamma)) * log_probs loss = torch.sum(target * focal_loss, dim=-1) return loss.mean() LDAM loss 代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index.scatter_(1, target.data.view(-1, 1), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) LMF loss 是Focal loss 和LDAM loss两个损失函数的加权求和,请用pytorch代码实现LMF损失函数并在模型训练中使用
下面是LMF损失函数的PyTorch代码实现,并在模型训练中使用:
```
import torch.nn.functional as F
class LMF(nn.Module):
def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30, alpha=0.25, gamma=2, beta=0.5):
super(LMF, self).__init__()
self.focal_loss = FocalLoss(alpha=alpha, gamma=gamma, weight=weight)
self.ldam_loss = LDAMLoss(cls_num_list, max_m=max_m, weight=weight, s=s)
self.alpha = alpha
self.beta = beta
def forward(self, x, target):
focal_loss = self.focal_loss(x, target)
ldam_loss = self.ldam_loss(x, target)
loss = self.alpha * focal_loss + self.beta * ldam_loss
return loss
# 在模型训练中使用LMF损失函数
model = MyModel()
criterion = LMF(cls_num_list, max_m, weight, s, alpha, gamma, beta)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
...
# 在每个epoch的训练过程中,计算损失并进行优化
for inputs, labels in dataloader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
在使用LMF损失函数时,需要传入cls_num_list、max_m、weight、s、alpha、gamma、beta这些参数,并将其作为criterion传入模型训练过程中。在每个epoch的训练过程中,计算损失并进行优化即可。
阅读全文