优化uint8_t Check_Parity(uint16_t value) { uint8_t i; uint8_t parity = 0; for (i = 0; i < 9; i++) { if (value & (1 << i)) { parity++; } } if (parity % 2) { return 0; } return 1; }

时间: 2024-03-21 19:40:37 浏览: 16
可以优化这段代码的执行效率。首先,循环次数可以减少到8,因为16位整数只有8个有效位。其次,可以使用异或操作来计算二进制中1的总数,而不是每次循环都检查一次。最终的代码如下: ```c uint8_t Check_Parity(uint16_t value) { uint8_t parity = 0; uint8_t i; for (i = 0; i < 8; i++) { parity ^= (value >> i) & 1; } return parity; } ``` 这个版本的代码只需要8次循环,而且使用异或操作计算1的总数,比每次检查更高效。最后,返回的值改为奇偶校验位的值,而不是0或1。
相关问题

LL_USART_TransmitData8(USART_TypeDef *USARTx, uint8_t Value)发送数据函数(8bits)

`LL_USART_TransmitData8(USART_TypeDef *USARTx, uint8_t Value)` 是一个函数,用于通过 USARTx(USART1、USART2等)发送一个8位数据(Value)。 具体来说,该函数有两个参数: - `USARTx`:代表要使用的 USART 实例,例如 USART1、USART2 等。 - `Value`:代表要发送的8位数据。 该函数的作用是将指定的8位数据通过指定的 USART 实例发送出去。在发送数据之前,您需要先初始化和配置相关的 USART 实例,以确保它们可以正常工作。 以下是一个示例代码,演示如何使用该函数发送一个8位数据: ```c // 配置 USART LL_USART_InitTypeDef USART_InitStruct = {0}; USART_InitStruct.BaudRate = 9600; // 设置波特率为9600 USART_InitStruct.DataWidth = LL_USART_DATAWIDTH_8B; // 设置数据宽度为8位 USART_InitStruct.StopBits = LL_USART_STOPBITS_1; // 设置停止位为1个 USART_InitStruct.Parity = LL_USART_PARITY_NONE; // 禁用奇偶校验 LL_USART_Init(USARTx, &USART_InitStruct); // 初始化 USART // 启动 USART LL_USART_Enable(USARTx); // 启动 USART // 发送数据 uint8_t dataToSend = 0xAB; // 要发送的数据 while (!LL_USART_IsActiveFlag_TXE(USARTx)) {} // 等待发送缓冲区为空 LL_USART_TransmitData8(USARTx, dataToSend); // 发送数据 while (!LL_USART_IsActiveFlag_TC(USARTx)) {} // 等待发送完成 ``` 请注意,上述代码中的 `USARTx` 需要替换为您使用的 USART 实例,例如 `USART1`、`USART2` 等。另外,还可以根据需要调整波特率、数据宽度、停止位、奇偶校验等参数,以满足您的具体需求。 希望以上代码能帮助您使用 `LL_USART_TransmitData8` 函数发送8位数据。如果您还有其他问题,请随时提问。

typedef struct { uint32_t BaudRate; uint32_t WordLength; uint32_t StopBits; uint32_t Parity; uint32_t Mode; uint32_t HwFlowCtl; uint32_t OverSampling; / } UART_InitTypeDef;

这是一个定义了UART初始化参数的结构体,具体每个参数的含义如下: - BaudRate:串口的波特率 - WordLength:数据位的长度,一般为8位 - StopBits:停止位的个数,一般为1个或2个 - Parity:奇偶校验位,可选值为UART_PARITY_NONE(无校验)、UART_PARITY_EVEN(偶校验)和UART_PARITY_ODD(奇校验) - Mode:串口工作模式,可选值为UART_MODE_RX(只接收)、UART_MODE_TX(只发送)和UART_MODE_TX_RX(发送和接收) - HwFlowCtl:硬件流控制模式,可选值为UART_HWCONTROL_NONE(无流控制)、UART_HWCONTROL_RTS(RTS/CTS流控制)和UART_HWCONTROL_CTS(CTS/RTS流控制) - OverSampling:采样率,可选值为UART_OVERSAMPLING_16(16倍采样率)和UART_OVERSAMPLING_8(8倍采样率)

相关推荐

void myUSART_Init() { RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE); GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_USART1); GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_USART1); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Mode =GPIO_Mode_AF; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB,&GPIO_InitStructure); USART_InitTypeDef USART_InitStuctyre; USART_InitStuctyre.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_InitStuctyre.USART_Parity = USART_Parity_No; USART_InitStuctyre.USART_StopBits = USART_StopBits_1; USART_InitStuctyre.USART_BaudRate = 9600; USART_InitStuctyre.USART_WordLength = USART_WordLength_8b; USART_InitStuctyre.USART_HardwareFlowControl =USART_HardwareFlowControl_None; USART_Init(USART1,&USART_InitStuctyre); USART_Cmd(USART1,ENABLE); USART_ITConfig(USART1,USART_IT_TXE,ENABLE); NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2); NVIC_InitTypeDef NVIC_InitStructure; NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3; NVIC_Init(&NVIC_InitStructure); } void myUSARTsend_Byte(uint16_t Byte) { USART_SendData(USART1,Byte); while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET); } void myUSARTsend_Array(uint8_t *Array,uint16_t Length) { uint16_t i; for(i=0;i<=Length;i++) { myUSARTsend_Byte(Array[i]); } }

#include "stm32f10x.h"#include "stdio.h"#define RX_BUFFER_SIZE 9uint8_t rx_buffer[RX_BUFFER_SIZE];uint8_t rx_index = 0;void USART1_Init(void){ GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; // 打开USART1和GPIOA时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE); // 配置USART1的GPIO引脚 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); // 配置USART1的通信参数 USART_InitStructure.USART_BaudRate = 9600; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART1, &USART_InitStructure); // 打开USART1 USART_Cmd(USART1, ENABLE);}void USART1_IRQHandler(void){ if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET) { uint8_t data = USART_ReceiveData(USART1); if (rx_index < RX_BUFFER_SIZE) { rx_buffer[rx_index++] = data; } if (rx_index == RX_BUFFER_SIZE) { USART_ITConfig(USART1, USART_IT_RXNE, DISABLE); } }}int main(void){ USART1_Init(); while (1) { // 发送查询指令 USART_SendData(USART1, 0xFF); USART_SendData(USART1, 0x01); USART_SendData(USART1, 0x86); USART_SendData(USART1, 0x00); USART_SendData(USART1, 0x00); USART_SendData(USART1, 0x00); USART_SendData(USART1, 0x00); USART_SendData(USART1, 0x00); USART_SendData(USART1, 0x79); // 等待数据接收完成 rx_index = 0; USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); while (rx_index < RX_BUFFER_SIZE); // 计算甲醛浓度 uint16_t ch2o_raw = (rx_buffer[2] << 8) | rx_buffer[3]; float ch2o_conc = ch2o_raw / 1000.0; // 显示甲醛浓度 printf("CH2O Concentration: %.3f mg/m3\r\n", ch2o_conc); // 等待一段时间后再进行下一次检测 delay_ms(1000); }}void delay_ms(uint32_t ms){ uint32_t i, j; for (i = 0; i < ms; i++) for (j = 0; j < 2000; j++);}代码中串口是不是错了,应该是usart3吧

#include "stm32f10x.h" #include "oled.h" #include "USART.h" void USART1_IRQHandler(void) { if (USART_GetITStatus(USART1, USART_IT_RXNE) != RESET) { uint8_t data = USART_ReceiveData(USART1); if (usart_rx_len < USART_RX_BUF_SIZE) { usart_rx_buf[usart_rx_len++] = data; } } } void USART1_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_USART1, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; GPIO_Init(GPIOA, &GPIO_InitStructure); USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART1, &USART_InitStructure); USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); USART_Cmd(USART1, ENABLE); }

int main(void) { char message[100]={0}; gpio_Init(); USART1_Init(); while(1) { // ??????? while(USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == RESET); // ???? while(USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == SET) { message[i++] = USART_ReceiveData(USART1); } // ???????? if(strstr(message, "LIGHT ON") != NULL) { GPIO_SetBits(GPIOC, GPIO_Pin_13); } else if(strstr(message, "LIGHT OFF") != NULL) { GPIO_ResetBits(GPIOC, GPIO_Pin_13); } else if(strstr(message, "TEMPERATURE") != NULL) { // ?????? float temperature = 0; // TODO: ?????? // ?????? char str[50]; sprintf(str, "Temperature: %.2f", temperature); USART1_SendString((uint8_t*) str); } // ??1? delay(1000); }} void gpio_Init(void){ GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOC, &GPIO_InitStructure);} void USART1_Init(void) { USART_InitTypeDef USART_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART1, &USART_InitStructure); USART_Cmd(USART1, ENABLE);} void USART1_SendByte(uint8_t byte) { while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET); USART_SendD解释每句代码的意思,在每句代码后面写出注释

最新推荐

recommend-type

三相三绕组电力变压器专用技术规范.doc

变压器
recommend-type

计算机基础知识试题与解答

"计算机基础知识试题及答案-(1).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了计算机历史、操作系统、计算机分类、电子器件、计算机系统组成、软件类型、计算机语言、运算速度度量单位、数据存储单位、进制转换以及输入/输出设备等多个方面。 1. 世界上第一台电子数字计算机名为ENIAC(电子数字积分计算器),这是计算机发展史上的一个重要里程碑。 2. 操作系统的作用是控制和管理系统资源的使用,它负责管理计算机硬件和软件资源,提供用户界面,使用户能够高效地使用计算机。 3. 个人计算机(PC)属于微型计算机类别,适合个人使用,具有较高的性价比和灵活性。 4. 当前制造计算机普遍采用的电子器件是超大规模集成电路(VLSI),这使得计算机的处理能力和集成度大大提高。 5. 完整的计算机系统由硬件系统和软件系统两部分组成,硬件包括计算机硬件设备,软件则包括系统软件和应用软件。 6. 计算机软件不仅指计算机程序,还包括相关的文档、数据和程序设计语言。 7. 软件系统通常分为系统软件和应用软件,系统软件如操作系统,应用软件则是用户用于特定任务的软件。 8. 机器语言是计算机可以直接执行的语言,不需要编译,因为它直接对应于硬件指令集。 9. 微机的性能主要由CPU决定,CPU的性能指标包括时钟频率、架构、核心数量等。 10. 运算器是计算机中的一个重要组成部分,主要负责进行算术和逻辑运算。 11. MIPS(Millions of Instructions Per Second)是衡量计算机每秒执行指令数的单位,用于描述计算机的运算速度。 12. 计算机存储数据的最小单位是位(比特,bit),是二进制的基本单位。 13. 一个字节由8个二进制位组成,是计算机中表示基本信息的最小单位。 14. 1MB(兆字节)等于1,048,576字节,这是常见的内存和存储容量单位。 15. 八进制数的范围是0-7,因此317是一个可能的八进制数。 16. 与十进制36.875等值的二进制数是100100.111,其中整数部分36转换为二进制为100100,小数部分0.875转换为二进制为0.111。 17. 逻辑运算中,0+1应该等于1,但选项C错误地给出了0+1=0。 18. 磁盘是一种外存储设备,用于长期存储大量数据,既可读也可写。 这些题目旨在帮助学习者巩固和检验计算机基础知识的理解,涵盖的领域广泛,对于初学者或需要复习基础知识的人来说很有价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

设置ansible 开机自启

Ansible是一个强大的自动化运维工具,它可以用来配置和管理服务器。如果你想要在服务器启动时自动运行Ansible任务,通常会涉及到配置服务或守护进程。以下是使用Ansible设置开机自启的基本步骤: 1. **在主机上安装必要的软件**: 首先确保目标服务器上已经安装了Ansible和SSH(因为Ansible通常是通过SSH执行操作的)。如果需要,可以通过包管理器如apt、yum或zypper安装它们。 2. **编写Ansible playbook**: 创建一个YAML格式的playbook,其中包含`service`模块来管理服务。例如,你可以创建一个名为`setu
recommend-type

计算机基础知识试题与解析

"计算机基础知识试题及答案(二).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了操作系统、硬件、数据表示、存储器、程序、病毒、计算机分类、语言等多个方面的知识。 1. 计算机系统由硬件系统和软件系统两部分组成,选项C正确。硬件包括计算机及其外部设备,而软件包括系统软件和应用软件。 2. 十六进制1000转换为十进制是4096,因此选项A正确。十六进制的1000相当于1*16^3 = 4096。 3. ENTER键是回车换行键,用于确认输入或换行,选项B正确。 4. DRAM(Dynamic Random Access Memory)是动态随机存取存储器,选项B正确,它需要周期性刷新来保持数据。 5. Bit是二进制位的简称,是计算机中数据的最小单位,选项A正确。 6. 汉字国标码GB2312-80规定每个汉字用两个字节表示,选项B正确。 7. 微机系统的开机顺序通常是先打开外部设备(如显示器、打印机等),再开启主机,选项D正确。 8. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能执行,选项A正确。 9. 微机病毒是指人为设计的、具有破坏性的小程序,通常通过网络传播,选项D正确。 10. 运算器、控制器及内存的总称是CPU(Central Processing Unit),选项A正确。 11. U盘作为外存储器,断电后存储的信息不会丢失,选项A正确。 12. 财务管理软件属于应用软件,是为特定应用而开发的,选项D正确。 13. 计算机网络的最大好处是实现资源共享,选项C正确。 14. 个人计算机属于微机,选项D正确。 15. 微机唯一能直接识别和处理的语言是机器语言,它是计算机硬件可以直接执行的指令集,选项D正确。 16. 断电会丢失原存信息的存储器是半导体RAM(Random Access Memory),选项A正确。 17. 硬盘连同驱动器是一种外存储器,用于长期存储大量数据,选项B正确。 18. 在内存中,每个基本单位的唯一序号称为地址,选项B正确。 以上是对文档部分内容的详细解释,这些知识对于理解和操作计算机系统至关重要。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

时间序列大模型的研究进展

时间序列大模型是近年来自然语言处理领域的一个热门研究方向,它们专注于理解和生成基于时间顺序的数据,比如文本序列、音频或视频信号。这类模型通常结合了Transformer架构(如BERT、GPT等)与循环神经网络(RNNs, LSTM)的长短期记忆能力,以捕捉序列数据中的时间依赖性。 近期的研究进展包括: 1. 长序列建模:研究人员一直在努力提高模型能够处理长序列的能力,例如M6和Turing-NLG,这些模型扩展了序列长度限制,增强了对长期依赖的理解。 2. 结合外部知识:一些模型开始融合外部知识库,如ProphetNet和D-PTM,以提升对复杂时间序列的预测精度。 3. 强化学习和
recommend-type

计算机基础知识试题与解析

"这份文档是计算机基础知识的试题集,包含了多项选择题,涵盖了计算机系统的构成、键盘功能、数据单位、汉字编码、开机顺序、程序类型、计算机病毒、内存分类、计算机网络的应用、计算机类型、可执行语言、存储器角色、软件类别、操作系统归属、存储容量单位、网络类型以及微机发展的标志等多个知识点。" 1. 计算机系统由硬件系统和软件系统组成,A选项仅提及计算机及外部设备,B选项提到了一些外部设备但不完整,C选项正确,D选项将硬件和软件混淆为系统硬件和系统软件。 2. ENTER键在计算机中是回车换行键,用于确认输入或换行,B选项正确。 3. Bit是二进制位的简称,是计算机中最基本的数据单位,A选项正确;字节Byte是8个Bit组成的单位,C选项的字节是正确的,但题目中问的是Bit。 4. 汉字国标码GB2312-80规定,每个汉字用两个字节表示,B选项正确。 5. 微机系统的开机顺序通常是先开启外部设备(如显示器、打印机等),最后开启主机,D选项符合这一顺序。 6. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能运行,A选项正确。 7. 微机病毒是指特制的、具有破坏性的小程序,可以影响计算机的正常运行,D选项正确。 8. 微型计算机的运算器、控制器及内存的总称是CPU,A选项错误,应是C选项的主机。 9. 软磁盘(软盘)中的信息在断电后不会丢失,因为它是非易失性存储,A选项正确。 10. 计算机网络的最大好处是实现资源共享,C选项正确。 11. 个人计算机通常指的是微机,D选项正确。 12. 微机唯一能直接识别和处理的语言是机器语言,D选项正确。 13. 计算机存储器是记忆部件,用于存储数据和指令,D选项正确。 14. 人事档案管理程序属于应用软件,专门用于特定用途,B选项正确。 15. DOS在计算机中属于系统软件,负责管理和控制计算机硬件和软件资源,C选项正确。 16. 反映计算机存储容量的基本单位是字节,B选项正确。 17. LAN网指的是局域网,A选项正确。 18. 微型计算机的发展主要以微处理器的发展为特征,C选项正确。 以上是对试题中涉及的计算机基础知识的详细解析。这些知识点构成了计算机科学的基础,并且对于理解和操作计算机系统至关重要。