ax = fig.add_axes([0.1, 0.1, 0.5, 0.4],projection=ccrs.PlateCarree())

时间: 2024-02-16 10:02:26 浏览: 18
这是使用Matplotlib绘制地图时的一行代码。其中,fig是指代表整个图形的Figure对象,add_axes()方法用于在Figure对象上添加一个Axes对象,[0.1, 0.1, 0.5, 0.4]参数表示Axes对象的左下角位置及宽度和高度,projection参数则表示使用的地图投影方式,这里使用的是ccrs模块中的PlateCarree投影方式,它是经纬度坐标系,可以用于绘制全球地图。
相关问题

优化这个代码import xarray as xr import netCDF4 as nc import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt import cartopy.mpl.ticker as cticker import cartopy.crs as ccrs import cartopy.feature as cfeature ds = xr.open_dataset('C:/Users/cindy/Desktop/SP.nc', engine='netcdf4') # 读取原始数据 ds_temp = xr.open_dataset('C:/Users/cindy/Desktop/SP.nc') # 区域提取* south_asia = ds_temp.sel(latitude=slice(38, 28), longitude=slice(75, 103)) indian_ocean = ds_temp.sel(latitude=slice(5, -15), longitude=slice(60, 100)) # 高度插值 south_asia_200hpa = south_asia.t.interp(level=200) indian_ocean_200hpa = indian_ocean.t.interp(level=200) south_asia_400hpa = south_asia.t.interp(level=400) indian_ocean_400hpa = indian_ocean.t.interp(level=400) # 区域平均 TTP = south_asia_400hpa.mean(dim=('latitude', 'longitude'))#.values TTIO = indian_ocean_400hpa.mean(dim=('latitude', 'longitude'))# TTP_200hpa = south_asia_200hpa.mean(dim=('latitude', 'longitude')) TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude')) tlup=(TTP-TTIO)-(TTP_200hpa-TTIO_200hpa)-(-5.367655815) # 定义画图区域和投影方式 fig = plt.figure(figsize=[10, 8]) ax = plt.axes(projection=ccrs.PlateCarree()) # 添加地图特征 ax.set_extent([60, 140, -15, 60], crs=ccrs.PlateCarree()) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidths=0.5) ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor='lightgray') ax.add_feature(cfeature.OCEAN.with_scale('50m'), facecolor='white') # 画距平场 im = ax.contourf(TTP_200hpa, TTP, tlup, cmap='coolwarm', levels=np.arange(-4, 4.5, 0.5), extend='both') # 添加色标 cbar = plt.colorbar(im, ax=ax, shrink=0.8) cbar.set_label('Temperature anomaly (°C)') # 添加经纬度坐标轴标签 ax.set_xticks(np.arange(60, 105, 10), crs=ccrs.PlateCarree()) ax.set_yticks(np.arange(-10, 40, 10), crs=ccrs.PlateCarree()) lon_formatter = cticker.LongitudeFormatter() lat_formatter = cticker.LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) # 添加标题和保存图片 plt.title('Temperature anomaly at 400hPa over South Asia and the Indian Ocean') plt.savefig('temperature_anomaly.png', dpi=300) plt.show()

1. 首先,可以将多个导入语句合并为一行,以提高代码的可读性。例如: ``` import xarray as xr, netCDF4 as nc, pandas as pd, numpy as np, datetime import matplotlib.pyplot as plt import cartopy.mpl.ticker as cticker, cartopy.crs as ccrs, cartopy.feature as cfeature ``` 2. 可以在代码中删除不必要的变量,例如 `ds` 和 `ds_temp` 都是指向同一个文件的数据集,因此只需要保留一个即可。 3. 对于数据集的区域提取和高度插值操作,可以将它们合并成一个链式操作,以减少代码行数。例如: ``` south_asia = ds.sel(latitude=slice(38, 28), longitude=slice(75, 103)).t.interp(level=200) indian_ocean = ds.sel(latitude=slice(5, -15), longitude=slice(60, 100)).t.interp(level=200) ``` 4. 对于计算平均值的操作,可以使用 `reduce` 函数,以减少代码行数。例如: ``` TTP, TTIO = np.array([south_asia_400hpa, indian_ocean_400hpa]).reduce(lambda x, y: x.mean(dim=('latitude', 'longitude')), axis=0) TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude')) ``` 5. 可以将一些常量定义为全局变量或者类变量,以方便后续使用。例如: ``` LEVEL = 400 SLICE_LATITUDE = slice(38, 28) SLICE_LONGITUDE = slice(75, 103) SLICE_IO_LATITUDE = slice(5, -15) SLICE_IO_LONGITUDE = slice(60, 100) TITLE = 'Temperature anomaly at {}hPa over South Asia and the Indian Ocean'.format(LEVEL) ``` 6. 可以将绘图的代码封装为一个函数,以提高代码的可读性和复用性。例如: ``` def plot_temperature_anomaly(TTP, TTIO, TTP_200hpa, TTIO_200hpa, tlup): fig = plt.figure(figsize=[10, 8]) ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent([60, 140, -15, 60], crs=ccrs.PlateCarree()) ax.add_feature(cfeature.COASTLINE.with_scale('50m'), linewidths=0.5) ax.add_feature(cfeature.LAND.with_scale('50m'), facecolor='lightgray') ax.add_feature(cfeature.OCEAN.with_scale('50m'), facecolor='white') im = ax.contourf(TTP_200hpa, TTP, tlup, cmap='coolwarm', levels=np.arange(-4, 4.5, 0.5), extend='both') cbar = plt.colorbar(im, ax=ax, shrink=0.8) cbar.set_label('Temperature anomaly (°C)') ax.set_xticks(np.arange(60, 105, 10), crs=ccrs.PlateCarree()) ax.set_yticks(np.arange(-10, 40, 10), crs=ccrs.PlateCarree()) lon_formatter = cticker.LongitudeFormatter() lat_formatter = cticker.LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) plt.title(TITLE) plt.savefig('temperature_anomaly.png', dpi=300) plt.show() ``` 7. 最后,可以将所有操作封装为一个函数,以方便调用。例如: ``` def calculate_and_plot_temperature_anomaly(filename): ds = xr.open_dataset(filename) south_asia = ds.sel(latitude=SLICE_LATITUDE, longitude=SLICE_LONGITUDE).t.interp(level=LEVEL) indian_ocean = ds.sel(latitude=SLICE_IO_LATITUDE, longitude=SLICE_IO_LONGITUDE).t.interp(level=LEVEL) south_asia_200hpa = south_asia.t.interp(level=200) indian_ocean_200hpa = indian_ocean.t.interp(level=200) TTP, TTIO = np.array([south_asia, indian_ocean]).reduce(lambda x, y: x.mean(dim=('latitude', 'longitude')), axis=0) TTP_200hpa = south_asia_200hpa.mean(dim=('latitude', 'longitude')) TTIO_200hpa = indian_ocean_200hpa.mean(dim=('latitude', 'longitude')) tlup=(TTP-TTIO)-(TTP_200hpa-TTIO_200hpa)-(-5.367655815) plot_temperature_anomaly(TTP, TTIO, TTP_200hpa, TTIO_200hpa, tlup) ``` 这样,我们就可以通过调用 `calculate_and_plot_temperature_anomaly(filename)` 函数来计算和绘制温度距平图了。

proj = ccrs.PlateCarree() fig = plt.figure(figsize=(5.5, 5), dpi=600) # 创建画布 ax = fig.add_subplot(221, projection = proj) extent = [114.5, 123, 27, 36] shp_path = "e:/z/ozone/2023年省级/2023年初省级矢量.shp" shp_reader = Reader(shp_path) ax = plt.axes(projection=ccrs.PlateCarree()) ax.add_feature(cfeature.OCEAN, fc='white', zorder=2) ax.add_geometries(shp_reader.geometries(), fc="None", ec="k", lw=0.8, crs=proj, zorder=2) ax.set_xticks(np.arange(extent[0]+0.5, extent[1]+1, 2)) ax.set_yticks(np.arange(extent[2], extent[3]+1, 2)) ax.xaxis.set_major_formatter(LongitudeFormatter()) ax.yaxis.set_major_formatter(LatitudeFormatter()) ax.set_extent(extent, proj) #ax.set_title(labels,loc="left",fontsize=12,pad=1) cf = ax.contourf(grid_x, grid_y, grid_data, cmap=plt.cm.RdBu_r, extend="both", levels=np.arange(10, 190, 10)) cb = fig.colorbar(cf, shrink=1.5, pad=0.08, fraction=0.04, ax=ax) q = ax.quiver(lon_w[::2], lat_w[::2], u10_mean[::2, ::2], v10_mean[::2, ::2], color="k", width=0.005, scale=50, zorder=3) ax.quiverkey(q, 0.88, 0.85, U=5, angle=0, label="5 m/s", labelpos="E", color="k", labelcolor="k", coordinates='figure') #------------------------plot----------------------- plt.subplots_adjust(left=0.15,right=0.85,top=0.8,bottom=0.2,wspace=0.15,hspace=0.2) q1,cf1=plot(ssl,ax[0][0],'2023-03-08') plt.show()

根据你提供的代码,你创建了一个名为`fig`的画布,并添加了一个子图`ax`。然后,你设置了子图的投影为`ccrs.PlateCarree()`,并定义了一个范围`extent`。 接下来,你添加了海洋特征和矢量图层到子图中,并设置了x轴和y轴的刻度和格式。然后,你使用`ax.contourf()`绘制了等值填充图,并添加了一个颜色条`cb`。你还使用`ax.quiver()`绘制了矢量场图,并添加了一个矢量场图例。 最后,你使用`plt.subplots_adjust()`函数调整了子图的布局参数,并调用了一个名为`plot()`的函数,并将返回的结果分配给了`q1`和`cf1`两个变量。 请注意,根据你之前的问题,我无法确定`plot()`函数的具体实现和返回值。请确保在使用`plot()`函数之前已经定义了该函数,并且你正确地传递了所需的参数。 如果你遇到任何错误或需要进一步帮助,请提供更多上下文或相关代码,这样我就能够更准确地指导你解决问题。

相关推荐

最新推荐

recommend-type

【疾病分类】 GUI SVM大脑疾病(脑瘤)和神经疾病(动脉瘤)分类【含Matlab源码 4093期】.zip

【疾病分类】 GUI SVM大脑疾病(脑瘤)和神经疾病(动脉瘤)分类【含Matlab源码 4093期】
recommend-type

【图像边缘检测】小波变换图像边缘检测【含Matlab源码 4142期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

HC200-10标定版描述文件及标定版ps文件

HC200-10标定版描述文件及标定版ps文件
recommend-type

【图像融合】双树复小波变换像素级图像融合【含Matlab源码 2024期】.zip

Matlab领域上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
recommend-type

顾客模具验收鉴定报告.doc

顾客模具验收鉴定报告.doc
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

云原生架构与soa架构区别?

云原生架构和SOA架构是两种不同的架构模式,主要有以下区别: 1. 设计理念不同: 云原生架构的设计理念是“设计为云”,注重应用程序的可移植性、可伸缩性、弹性和高可用性等特点。而SOA架构的设计理念是“面向服务”,注重实现业务逻辑的解耦和复用,提高系统的灵活性和可维护性。 2. 技术实现不同: 云原生架构的实现技术包括Docker、Kubernetes、Service Mesh等,注重容器化、自动化、微服务等技术。而SOA架构的实现技术包括Web Services、消息队列等,注重服务化、异步通信等技术。 3. 应用场景不同: 云原生架构适用于云计算环境下的应用场景,如容器化部署、微服务
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。