CNN模型中图像数据和数值数据特征融合进行回归预测。PyTorch实现代码
时间: 2024-01-24 10:17:14 浏览: 99
以下是一个简单的示例代码,用于将CNN模型中的图像数据和数值数据特征融合,进行回归预测。在这个示例中,我们使用了PyTorch框架,并假设我们已经有了一个可以处理图像数据的CNN模型和一个可以处理数值数据特征的MLP模型。
```
import torch
import torch.nn as nn
import torch.optim as optim
# 定义CNN模型
class CNNModel(nn.Module):
def __init__(self):
super(CNNModel, self).__init__()
self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(64 * 4 * 4, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv3(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = x.view(-1, 64 * 4 * 4)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return x
# 定义MLP模型
class MLPModel(nn.Module):
def __init__(self):
super(MLPModel, self).__init__()
self.fc1 = nn.Linear(5, 16)
self.fc2 = nn.Linear(16, 32)
self.fc3 = nn.Linear(32, 1)
def forward(self, x):
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
x = nn.functional.relu(x)
x = self.fc3(x)
return x
# 定义整合模型
class FusionModel(nn.Module):
def __init__(self):
super(FusionModel, self).__init__()
self.cnn_model = CNNModel()
self.mlp_model = MLPModel()
self.fc1 = nn.Linear(10 + 1, 1)
def forward(self, x1, x2):
x1 = self.cnn_model(x1)
x2 = self.mlp_model(x2)
x = torch.cat((x1, x2), dim=1)
x = self.fc1(x)
return x
# 加载数据
train_loader = ...
test_loader = ...
# 初始化模型和优化器
model = FusionModel()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(num_epochs):
for i, (images, features, labels) in enumerate(train_loader):
# 将图像数据和数值数据特征作为输入
images = images.float()
features = features.float()
labels = labels.float()
output = model(images, features)
# 计算损失函数并更新模型
loss = nn.functional.mse_loss(output, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 测试模型
with torch.no_grad():
total_loss = 0
for images, features, labels in test_loader:
images = images.float()
features = features.float()
labels = labels.float()
output = model(images, features)
total_loss += nn.functional.mse_loss(output, labels, reduction='sum').item()
avg_loss = total_loss / len(test_loader.dataset)
print('Test Loss: {:.4f}'.format(avg_loss))
```
在这个示例中,我们定义了三个模型:
1. CNN模型处理图像数据
2. MLP模型处理数值数据特征
3. FusionModel整合两个模型的输出,并进行回归预测
在训练和测试过程中,我们将图像数据和数值数据特征作为输入,通过FusionModel模型进行融合,并计算损失函数和优化模型。最后,我们使用测试集对模型进行评估,并输出测试损失。
阅读全文