error=np.random.randn(10)
时间: 2023-11-20 17:53:28 浏览: 69
生成一个长度为10的服从标准正态分布的一维数组error,其中每个元素都是独立同分布的随机变量。标准正态分布是指均值为0,方差为1的正态分布。
```python
import numpy as np
error = np.random.randn(10)
print(error)
```
输出结果类似于:
```
[-0.12345678 1.23456789 -0.98765432 0. 1.11111111 -0.22222222
0.33333333 -0.44444444 0.55555556 -0.66666667]
```
相关问题
import numpy as np class BPNeuralNetwork: def __init__(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重和偏置 self.weights_ih = np.random.randn(hidden_size, input_size) self.bias_ih = np.random.randn(hidden_size, 1) self.weights_ho = np.random.randn(output_size, hidden_size) self.bias_ho = np.random.randn(output_size, 1) # 定义激活函数 self.activation = lambda x: 1 / (1 + np.exp(-x)) self.derivative = lambda x: x * (1 - x) def forward(self, inputs): # 计算隐藏层的输出 hidden = self.activation(np.dot(self.weights_ih, inputs) + self.bias_ih) # 计算输出层的输出 output = self.activation(np.dot(self.weights_ho, hidden) + self.bias_ho) return output def backward(self, inputs, targets, output): # 计算输出层的误差 output_error = targets - output output_delta = output_error * self.derivative(output) # 计算隐藏层的误差 hidden_error = np.dot(self.weights_ho.T, output_delta) hidden_delta = hidden_error * self.derivative(hidden) # 更新权重和偏置 self.weights_ho += np.dot(output_delta, hidden.T) self.bias_ho += output_delta self.weights_ih += np.dot(hidden_delta, inputs.T) self.bias_ih += hidden_delta def train(self, inputs, targets, epochs): for i in range(epochs): for j in range(len(inputs)): # 前向传播 output = self.forward(inputs[j].reshape(-1, 1)) # 反向传播 self.backward(inputs[j].reshape(-1, 1), targets[j].reshape(-1, 1), output)
这段代码实现了一个使用反向传播算法进行训练的多层前馈神经网络。具体来说,它包括了以下几个部分:
1. 初始化函数__init__中,定义了输入层、隐藏层和输出层的节点数,以及它们之间的权重和偏置。其中,权重和偏置都是随机初始化的。
2. 定义了激活函数activation和导数函数derivative,这里采用的是Sigmoid函数。
3. 前向传播函数forward中,通过输入数据和当前的权重和偏置计算出隐藏层和输出层的输出值。
4. 反向传播函数backward中,通过目标值和当前的输出值计算出输出层的误差,然后通过权重矩阵的转置和输出层误差计算隐藏层的误差,最后更新权重和偏置。
5. 训练函数train中,通过迭代的方式对网络进行训练,每次迭代都遍历所有的输入数据,并调用前向传播和反向传播函数来更新权重和偏置。训练的次数由参数epochs指定。
这段代码实现了一个基本的神经网络,可以用于解决一些简单的分类和回归问题。但是需要注意的是,它还有很多可以改进的地方,比如添加正则化、使用其他的激活函数、调整学习率等等。
class NeuralNetwork: def init(self, input_dim, hidden_dim, output_dim): self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.weights1 = np.random.randn(input_dim, hidden_dim) self.bias1 = np.zeros((1, hidden_dim)) self.weights2 = np.random.randn(hidden_dim, output_dim) self.bias2 = np.zeros((1, output_dim)) def relu(self, x): return np.maximum(0, x) def relu_derivative(self, x): return np.where(x >= 0, 1, 0) def forward(self, x): self.z1 = np.dot(x, self.weights1) + self.bias1 self.a1 = self.relu(self.z1) self.z2 = np.dot(self.a1, self.weights2) + self.bias2 self.y_hat = self.z2 return self.y_hat def backward(self, x, y, learning_rate): error = self.y_hat - y delta2 = error delta1 = np.dot(delta2, self.weights2.T) * self.relu_derivative(self.a1) grad_weights2 = np.dot(self.a1.T, delta2) grad_bias2 = np.sum(delta2, axis=0, keepdims=True) grad_weights1 = np.dot(x.T, delta1) grad_bias1 = np.sum(delta1, axis=0) self.weights2 -= learning_rate * grad_weights2 self.bias2 -= learning_rate * grad_bias2 self.weights1 -= learning_rate * grad_weights1 根据代码加上损失函数和优化
函数,可以将这个神经网络变为完整的模型。一种常见的损失函数是均方误差(Mean Squared Error),可以用于回归问题:
```python
class NeuralNetwork:
def __init__(self, input_dim, hidden_dim, output_dim):
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.weights1 = np.random.randn(input_dim, hidden_dim)
self.bias1 = np.zeros((1, hidden_dim))
self.weights2 = np.random.randn(hidden_dim, output_dim)
self.bias2 = np.zeros((1, output_dim))
def relu(self, x):
return np.maximum(0, x)
def relu_derivative(self, x):
return np.where(x >= 0, 1, 0)
def forward(self, x):
self.z1 = np.dot(x, self.weights1) + self.bias1
self.a1 = self.relu(self.z1)
self.z2 = np.dot(self.a1, self.weights2) + self.bias2
self.y_hat = self.z2
return self.y_hat
def backward(self, x, y, learning_rate):
error = self.y_hat - y
delta2 = error
delta1 = np.dot(delta2, self.weights2.T) * self.relu_derivative(self.a1)
grad_weights2 = np.dot(self.a1.T, delta2)
grad_bias2 = np.sum(delta2, axis=0, keepdims=True)
grad_weights1 = np.dot(x.T, delta1)
grad_bias1 = np.sum(delta1, axis=0)
self.weights2 -= learning_rate * grad_weights2
self.bias2 -= learning_rate * grad_bias2
self.weights1 -= learning_rate * grad_weights1
self.bias1 -= learning_rate * grad_bias1
def mse_loss(self, y, y_hat):
return np.mean((y - y_hat)**2)
def sgd_optimizer(self, x, y, learning_rate):
y_hat = self.forward(x)
loss = self.mse_loss(y, y_hat)
self.backward(x, y, learning_rate)
return loss
```
在这个模型中,我们添加了 `mse_loss` 函数,用于计算均方误差,同时添加了 `sgd_optimizer` 函数,用于执行随机梯度下降优化算法。在每次迭代中,我们计算预测值 `y_hat`,然后计算损失值并执行反向传播算法更新神经网络的权重和偏置。最后,我们返回损失值作为当前迭代的结果。根据需要,我们可以使用其他损失函数和优化器来训练这个神经网络。
阅读全文