写一个resnet50的网络
时间: 2023-12-03 08:32:24 浏览: 67
使用 Trasnfer 学习架构 ResNet50,CNN 模型实现手写数字识别
很高兴为你提供帮助!ResNet50是一个非常流行的深度神经网络,常用于图像分类和目标检测等任务。以下是一个简单的实现代码:
```python
import tensorflow as tf
from tensorflow.keras.layers import Dense, Conv2D, BatchNormalization, Activation, Add, Flatten, AveragePooling2D
def residual_block(x, filters, downsample=False):
shortcut = x
stride = 1
if downsample:
stride = 2
shortcut = Conv2D(filters, 1, strides=2)(shortcut)
shortcut = BatchNormalization()(shortcut)
x = Conv2D(filters, 3, strides=stride, padding='same')(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filters, 3, padding='same')(x)
x = BatchNormalization()(x)
x = Add()([x, shortcut])
x = Activation('relu')(x)
return x
def ResNet50(input_shape=(224, 224, 3), num_classes=1000):
inputs = tf.keras.Input(shape=input_shape)
x = Conv2D(64, 7, strides=2, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
filters = 64
for stage in range(3):
for block in range(4):
downsample = False
if block == 0 and stage > 0:
downsample = True
x = residual_block(x, filters, downsample)
filters *= 2
x = AveragePooling2D()(x)
x = Flatten()(x)
x = Dense(num_classes, activation='softmax')(x)
model = tf.keras.Model(inputs=inputs, outputs=x)
return model
```
希望这能为你提供帮助!如果你有任何其他问题,请随时问我。
阅读全文