fitness = zeros(1,population_size); for j = 1:population_size fitness(j) = fitness_function(population(j,:)); end优化这段代码
时间: 2024-05-01 13:21:09 浏览: 98
可以将for循环改为向量化操作,可以提高代码的运行效率。具体地,可以使用以下代码进行优化:
```
fitness = arrayfun(@(j) fitness_function(population(j,:)), 1:population_size);
```
这里使用了MATLAB内置函数`arrayfun`,它的作用是将函数`fitness_function`应用于向量`population`的每一行,并返回一个包含每个结果的向量。`@(j)`表示匿名函数,输入参数为`j`,即`population`的行号。最后,使用`1:population_size`生成一个包含所有行号的向量。
相关问题
免疫遗传算法优化 def immune_genetic_algorithm(population_size, chromosome_length, max_generations): population = np.random.uniform(-1, 1, (population_size, chromosome_length)) best_fitness = 0 best_individual = None for generation in range(max_generations): fitness_values = np.zeros(population_size) # 计算适应度值 for i in range(population_size): fitness_values[i] = fitness_function(population[i]) # 更新最佳个体 if fitness_values[i] > best_fitness: best_fitness = fitness_values[i] best_individual = population[i]我需要上述代码的适应度函数是BP*网络的实际输出值与预期输出值之间的均方误差的倒数,并且种群编码方式是二进制编码
好的,你希望使用免疫遗传算法来优化一个基于BP网络的适应度函数。适应度函数是基于实际输出值与预期输出值之间的均方误差的倒数。种群的编码方式是二进制编码。下面是相应的代码:
```python
import numpy as np
def immune_genetic_algorithm(population_size, chromosome_length, max_generations):
population = np.random.randint(2, size=(population_size, chromosome_length))
best_fitness = 0
best_individual = None
for generation in range(max_generations):
fitness_values = np.zeros(population_size)
# 计算适应度值
for i in range(population_size):
fitness_values[i] = fitness_function(population[i])
# 更新最佳个体
best_index = np.argmax(fitness_values)
if fitness_values[best_index] > best_fitness:
best_fitness = fitness_values[best_index]
best_individual = population[best_index]
# 进行免疫选择
population = immune_selection(population, fitness_values)
# 进行遗传操作
population = genetic_operation(population)
return best_individual
def fitness_function(individual):
# 将二进制编码转换为BP网络的参数形式
# 进行BP网络的训练,并计算适应度值
return fitness_value
def immune_selection(population, fitness_values):
# 根据适应度值进行免疫选择操作
return selected_population
def genetic_operation(population):
# 进行遗传操作,如交叉、变异等
return new_population
# 设置参数并运行免疫遗传算法
population_size = 100
chromosome_length = 10
max_generations = 50
best_individual = immune_genetic_algorithm(population_size, chromosome_length, max_generations)
```
请注意,上述代码仅为示例,具体的适应度函数、免疫选择操作和遗传操作需要根据你的具体问题进行实现。希望对你有帮助!如有任何问题,请随时提问。
帮我在下面的代码中添加高斯优化,原代码如下:import numpy as np from sklearn.svm import OneClassSVM from scipy.optimize import minimize def fitness_function(x): """ 定义适应度函数,即使用当前参数下的模型进行计算得到的损失值 """ gamma, nu = x clf = OneClassSVM(kernel='rbf', gamma=gamma, nu=nu) clf.fit(train_data) y_pred = clf.predict(test_data) # 计算错误的预测数量 error_count = len([i for i in y_pred if i != 1]) # 将错误数量作为损失值进行优化 return error_count def genetic_algorithm(x0, bounds): """ 定义遗传算法优化函数 """ population_size = 20 # 种群大小 mutation_rate = 0.1 # 变异率 num_generations = 50 # 迭代次数 num_parents = 2 # 选择的父代数量 num_elites = 1 # 精英数量 num_genes = x0.shape[0] # 参数数量 # 随机初始化种群 population = np.random.uniform(bounds[:, 0], bounds[:, 1], size=(population_size, num_genes)) for gen in range(num_generations): # 选择父代 fitness = np.array([fitness_function(x) for x in population]) parents_idx = np.argsort(fitness)[:num_parents] parents = population[parents_idx] # 交叉 children = np.zeros_like(parents) for i in range(num_parents): j = (i + 1) % num_parents mask = np.random.uniform(size=num_genes) < 0.5 children[i, mask] = parents[i, mask] children[i, ~mask] = parents[j, ~mask] # 变异 mask = np.random.uniform(size=children.shape) < mutation_rate children[mask] = np.random.uniform(bounds[:, 0], bounds[:, 1], size=np.sum(mask)) # 合并种群 population = np.vstack([parents, children]) # 选择新种群 fitness = np.array([fitness_function(x) for x in population]) elites_idx = np.argsort(fitness)[:num_elites] elites = population[elites_idx] # 输出结果 best_fitness = fitness[elites_idx[0]] print(f"Gen {gen+1}, best fitness: {best_fitness}") return elites[0] # 初始化参数 gamma0, nu0 = 0.1, 0.5 x0 = np.array([gamma0, nu0]) bounds = np.array([[0.01, 1], [0.01, 1]]) # 调用遗传算法优化 best_param = genetic_algorithm(x0, bounds) # 在最佳参数下训练模型,并在测试集上进行测试 clf = OneClassSVM(kernel='rbf', gamma=best_param[0], nu=best_param[1]) clf.fit(train_data) y_pred = clf.predict(test_data) # 计算错误的预测数量 error_count = len([i for i in y_pred if i != 1]) print(f"Best fitness: {error_count}, best parameters: gamma={best_param[0]}, nu={best_param[1]}")
您好,为了在下面的代码中添加高斯优化,您需要使用scipy模块中的optimize包,并使用minimize函数进行优化。具体修改如下:
import numpy as np
from sklearn.svm import OneClassSVM
from scipy.optimize import minimize
def fitness_function(x):
"""
定义适应度函数,即使用当前参数下的模型进行计算得到的损失值
"""
gamma, nu = x
clf = OneClassSVM(kernel='rbf', gamma=gamma, nu=nu)
clf.fit(train_data)
y_pred = clf.predict(test_data)
# 计算损失值
loss = np.sum(y_pred != test_label) / len(test_label)
return loss
# 定义初始参数值
gamma_init = 0.1
nu_init = 0.01
x_init = np.array([gamma_init, nu_init])
# 进行高斯优化
res = minimize(fitness_function, x_init, method='L-BFGS-B', bounds=((0, None), (0, 1)))
gamma_opt, nu_opt = res.x
# 使用优化后的参数值构建模型
clf_opt = OneClassSVM(kernel='rbf', gamma=gamma_opt, nu=nu_opt)
clf_opt.fit(train_data)
y_pred_opt = clf_opt.predict(test_data)
# 输出优化后的模型损失
loss_opt = np.sum(y_pred_opt != test_label) / len(test_label)
print('优化后模型的损失值:', loss_opt)
阅读全文
相关推荐














