scala语言实现NR算法估计逻辑回归参数
时间: 2023-10-12 17:18:38 浏览: 90
NR算法(Newton-Raphson算法)是一种迭代方法,用于求解非线性方程组。在逻辑回归中,NR算法可以用来估计模型参数。
Scala语言实现NR算法估计逻辑回归参数的步骤如下:
1. 定义逻辑回归模型
```scala
case class LogisticRegressionModel(weights: Vector, intercept: Double) {
def predict(features: Vector): Double = {
val margin = dot(weights, features) + intercept
1.0 / (1.0 + exp(-margin))
}
}
```
2. 定义损失函数
```scala
def computeCost(data: RDD[(Double, Vector)], model: LogisticRegressionModel): Double = {
val numExamples = data.count()
val margin = data.map { case (label, features) =>
label * (dot(model.weights, features) + model.intercept)
}
val loss = margin.map(m => log(1 + exp(-m))).sum()
loss / numExamples
}
```
3. 定义梯度函数
```scala
def computeGradient(data: RDD[(Double, Vector)], model: LogisticRegressionModel): (Vector, Double) = {
val numExamples = data.count()
val margin = data.map { case (label, features) =>
label * (dot(model.weights, features) + model.intercept)
}
val multiplier = margin.map(m => 1.0 / (1.0 + exp(-m)) - 1.0).zip(data.map(_._2)).map { case (error, features) =>
features * error
}
val gradient = multiplier.reduce(_ + _) / numExamples
val interceptGradient = margin.map(m => 1.0 / (1.0 + exp(-m)) - 1.0).sum() / numExamples
(gradient, interceptGradient)
}
```
4. 定义Hessian矩阵函数
```scala
def computeHessian(data: RDD[(Double, Vector)], model: LogisticRegressionModel): Matrix = {
val numExamples = data.count()
val margin = data.map { case (label, features) =>
label * (dot(model.weights, features) + model.intercept)
}
val multiplier = margin.map(m => 1.0 / (1.0 + exp(-m))).zip(data.map(_._2)).map { case (prob, features) =>
features.outer(features) * prob * (1 - prob)
}
multiplier.reduce(_ + _) / numExamples
}
```
5. 定义NR算法迭代函数
```scala
def trainWithNR(data: RDD[(Double, Vector)], numIterations: Int, learningRate: Double): LogisticRegressionModel = {
var model = LogisticRegressionModel(Vectors.dense(0.0), 0.0)
for (i <- 1 to numIterations) {
val (gradient, interceptGradient) = computeGradient(data, model)
val hessian = computeHessian(data, model)
val delta = inv(hessian) * gradient
val deltaIntercept = learningRate * interceptGradient
model = LogisticRegressionModel(model.weights - delta, model.intercept - deltaIntercept)
}
model
}
```
6. 测试模型
```scala
val data = sc.parallelize(Seq(
(0.0, Vectors.dense(0.1, 0.2, 0.3)),
(1.0, Vectors.dense(0.4, 0.5, 0.6)),
(0.0, Vectors.dense(0.7, 0.8, 0.9)),
(1.0, Vectors.dense(0.2, 0.3, 0.4))
))
val model = trainWithNR(data, 100, 0.01)
val prediction = model.predict(Vectors.dense(0.3, 0.4, 0.5))
println(prediction)
```
以上就是Scala语言实现NR算法估计逻辑回归参数的步骤。
阅读全文