plt.legend(fontsize=14) 啥意思?
时间: 2023-12-15 17:30:33 浏览: 313
`plt.legend(fontsize=14)`是用于设置图例字体大小的函数。其中,`fontsize`参数指定了图例中字体的大小为14。这个函数通常用于美化图表,使其更加易读和易于理解。
以下是一个例子,演示如何使用`plt.legend(fontsize=14)`函数来设置图例字体大小:
```python
import matplotlib.pyplot as plt
x = [1, 2, 3, 4, 5]
y1 = [1, 2, 3, 4, 5]
y2 = [1, 4, 9, 16, 25]
plt.plot(x, y1, label='y = x')
plt.plot(x, y2, label='y = x^2')
plt.legend(fontsize=14) # 设置图例字体大小为14
plt.show()
```
相关问题
y_test = y_test.reset_index(drop = True) y_predict2 = model_RF1.predict(x_test) plt.figure(figsize = (12,8)) plt.plot(y_predict2,color = 'b',label = 'predict',markersize=8) plt.plot(y_test,color = 'r',label = 'true',markersize=8) plt.xlabel('Test Sample',fontsize=30) plt.ylabel('y1',fontsize=30) plt.title('随机森林',fontsize=30) #坐标轴字体大小 plt.xticks(fontsize=25) plt.yticks(fontsize=25) plt.legend(fontsize=25,loc='upper right') # plt.savefig('GradientBoosting.png',dpi=300,bbox_inches = 'tight')
这段代码的作用是对训练好的随机森林模型进行测试,并将测试结果和真实值进行可视化比较。首先,使用`reset_index()`函数将`y_test`的索引重置为默认值,即0到n-1。接着,使用训练好的`model_RF1`模型对测试集`x_test`进行预测,将预测结果存储在`y_predict2`中。然后,使用`plt.plot()`函数将预测结果和真实值分别用蓝色和红色的线绘制在图表上。接下来,使用`plt.xlabel()`和`plt.ylabel()`函数分别设置x轴和y轴的标签,使用`plt.title()`函数设置图表的标题。然后,使用`plt.xticks()`和`plt.yticks()`函数设置x轴和y轴刻度标签的字体大小。最后,使用`plt.legend()`函数添加图例,并设置字体大小和位置。如果需要保存图表,可以使用`plt.savefig()`函数。
fig = plt.figure(figsize=(9, 5)) plt.subplot(1, 2, 1) plt.yscale('log') plt.plot(epochs, loss, linestyle='--', linewidth=3, color='orange', alpha=0.7, label='Train Loss') plt.plot(epochs, v_loss, linestyle='-.', linewidth=2, color='lime', alpha=0.8, label='Valid Loss') plt.ylim(0.3, 100) plt.xlabel('Epochs', fontsize=11) plt.ylabel('Loss', fontsize=12) plt.legend(fontsize=12) plt.subplot(1, 2, 2) plt.plot(epochs, acc, linestyle='--', linewidth=3, color='orange', alpha=0.7, label='Train Acc') plt.plot(epochs, v_acc, linestyle='-.', linewidth=2, color='lime', alpha=0.8, label='Valid Acc') plt.xlabel('Epochs', fontsize=11) plt.ylabel('Accuracy', fontsize=12) plt.legend(fontsize=12) plt.tight_layout() plt.show()这是一行输出两个图的代码,怎样实现两个图分别输出?
这段代码使用了subplot函数将两个图绘制在一个Figure中的两个子图中,其中第一个参数1表示行数,第二个参数2表示列数,第三个参数1表示在第一行第一列绘制图形,第三个参数2表示在第一行第二列绘制图形。如果想要分别输出两张图,可以将两个子图分别绘制在两个Figure中,如下所示:
```python
fig1 = plt.figure(figsize=(6, 5))
plt.yscale('log')
plt.plot(epochs, loss, linestyle='--', linewidth=3, color='orange', alpha=0.7, label='Train Loss')
plt.plot(epochs, v_loss, linestyle='-.', linewidth=2, color='lime', alpha=0.8, label='Valid Loss')
plt.ylim(0.3, 100)
plt.xlabel('Epochs', fontsize=11)
plt.ylabel('Loss', fontsize=12)
plt.legend(fontsize=12)
plt.show()
fig2 = plt.figure(figsize=(6, 5))
plt.plot(epochs, acc, linestyle='--', linewidth=3, color='orange', alpha=0.7, label='Train Acc')
plt.plot(epochs, v_acc, linestyle='-.', linewidth=2, color='lime', alpha=0.8, label='Valid Acc')
plt.xlabel('Epochs', fontsize=11)
plt.ylabel('Accuracy', fontsize=12)
plt.legend(fontsize=12)
plt.show()
```
这样就可以分别输出两张图了。注意,需要将Figure的大小调整为适当的大小,以便图像在输出时不会过于拥挤或过于稀疏。
阅读全文
相关推荐

















