features = df.iloc[:,:-1]

时间: 2024-02-26 16:52:53 浏览: 21
这是一个使用pandas库对DataFrame对象进行切片的代码,其中的df是一个DataFrame对象,iloc方法是pandas中的下标索引方法,[:,:-1]表示选取所有行和除最后一列之外的所有列,即选取DataFrame对象中的特征列。这里的features是一个新的DataFrame对象,其中包含了原始DataFrame对象中的特征列。需要注意的是,iloc方法选取行和列的下标都是从0开始的。
相关问题

norm_features = feature_scaler.fit_transform(train_df.iloc[:, 0:-1]) norm_targets = target_scaler.fit_transform(train_df.iloc[:, -1:])

### 回答1: 答:我们首先使用feature_scaler对训练数据集中除最后一列之外的所有列进行标准化处理,然后使用target_scaler对最后一列进行标准化处理,以得到norm_features和norm_targets。 ### 回答2: 上述代码是用于特征和目标变量的标准化处理。 首先,代码中的train_df是一个DataFrame类型的数据集,其中包含了训练数据的特征和目标变量。特征在代码中被表示为train_df.iloc[:, 0:-1],而目标变量在代码中被表示为train_df.iloc[:, -1:]。 然后,通过调用feature_scaler.fit_transform()函数,对特征进行标准化处理。标准化是一种常见的数据预处理技术,它可以将不同特征之间的值范围放缩到相同的尺度上。标准化过程中,特征的均值被减去,然后除以特征的标准差。标准化之后,特征的取值范围将变为均值为0,标准差为1。 同样地,通过调用target_scaler.fit_transform()函数,对目标变量进行标准化处理。标准化的目的是为了消除目标变量之间的单位差异,以便更好地对其进行比较和分析。 最后,经过标准化处理后的特征和目标变量,分别保存在norm_features和norm_targets中,可以用于后续的特征选择、模型训练和性能评估等任务。 需要注意的是,这里的标准化处理使用了两个不同的标量器(Scaler),即feature_scaler和target_scaler。这是因为特征和目标变量通常具有不同的值范围和分布情况,因此需要分别进行标准化处理。 ### 回答3: 这段代码的作用是对训练数据集进行特征和目标的归一化处理。 首先,train_df是一个数据框,包含了训练数据的特征和目标。train_df.iloc[:, 0:-1]表示取train_df中的所有行,但是只取前面的列作为特征,不包括最后一列。train_df.iloc[:, -1:]表示取train_df中的所有行,只取最后一列作为目标。所以,norm_features = feature_scaler.fit_transform(train_df.iloc[:, 0:-1])的作用是对训练数据的特征进行归一化处理,并将结果存储在norm_features中。 feature_scaler是一个特征缩放器的实例,可能使用的是一种缩放器类(例如Min-Max缩放器或标准化缩放器),用于对训练数据的特征进行归一化处理。fit_transform()函数则是对特征进行拟合和转换的操作,拟合操作是为了计算特征缩放器需要的统计量,转换操作是将特征数据进行缩放。 同理,target_scaler是一个目标缩放器的实例,用于对训练数据的目标进行归一化处理。target_scaler.fit_transform(train_df.iloc[:, -1:])的作用是对训练数据的目标进行归一化处理,并将结果存储在norm_targets中。 最终的结果是将训练数据集的特征归一化后得到的norm_features作为输入数据,norm_targets作为目标数据用于机器学习模型的训练。通过归一化处理,可以消除不同特征之间的尺度差异,提高模型的训练效果。

合并数据的代码。数据为temp = df["性别"].values.reshape(-1,1) #将其转化为一个列向量 from sklearn.preprocessing import OneHotEncoder#接下来 对象 enc = OneHotEncoder(drop='if_binary')#接下来,代码导象 enc.fit(temp)#代码使用 fit 方法对选定的列进行训练,及如何将它们进行编码 new_sex = enc.transform(temp).toarray()#并使用w_sex 变量中 new_sexfrom sklearn.preprocessing import StandardScaler#从er 类 scaler = StandardScaler()#创建了一个 scaler 对象 scaler.fit(df.iloc[:, 2:].values)#使用 fit 方法对选定的特征差 features = scaler.transform(df.iloc[:, 2:].values)#使用 transform 方法对 中。 scaled_features = pd.DataFrame(features, columns=df.columns[2:])#代中 scaled_features

这段代码没有将编码后的新特征列添加到原始数据框中,需要再进行一步合并操作。代码如下: ``` import numpy as np import pandas as pd from sklearn.preprocessing import OneHotEncoder, StandardScaler # 假设原始数据框为df,包含"性别"和其他特征列 temp = df["性别"].values.reshape(-1,1) #将其转化为一个列向量 enc = OneHotEncoder(drop='if_binary') enc.fit(temp) new_sex = enc.transform(temp).toarray() scaler = StandardScaler() scaler.fit(df.iloc[:, 2:].values) features = scaler.transform(df.iloc[:, 2:].values) # 将编码后的新特征列和标准化后的特征列合并 scaled_features = np.hstack((new_sex, features)) cols = list(enc.get_feature_names()) + list(df.columns[2:]) scaled_features = pd.DataFrame(scaled_features, columns=cols) ``` 这段代码中,我们使用numpy的hstack函数将编码后的新特征列和标准化后的特征列水平合并。然后,我们将新的特征列名和原始数据框中的特征列名合并起来,构成了新的特征列名,最后将合并后的数据存储在一个名为scaled_features的新数据框中,作为模型训练和预测的输入数据。

相关推荐

目标编码 def gen_target_encoding_feats(train, train_2, test, encode_cols, target_col, n_fold=10): '''生成target encoding特征''' # for training set - cv tg_feats = np.zeros((train.shape[0], len(encode_cols))) kfold = StratifiedKFold(n_splits=n_fold, random_state=1024, shuffle=True) for _, (train_index, val_index) in enumerate(kfold.split(train[encode_cols], train[target_col])): df_train, df_val = train.iloc[train_index], train.iloc[val_index] for idx, col in enumerate(encode_cols): # get all possible values for the current column col_values = set(train[col].unique()) if None in col_values: col_values.remove(None) # replace value with mode if it does not appear in the training set mode = train[col].mode()[0] df_val.loc[~df_val[col].isin(col_values), f'{col}_mean_target'] = mode test.loc[~test[col].isin(col_values), f'{col}_mean_target'] = mode target_mean_dict = df_train.groupby(col)[target_col].mean() if df_val[f'{col}_mean_target'].empty: df_val[f'{col}_mean_target'] = df_val[col].map(target_mean_dict) tg_feats[val_index, idx] = df_val[f'{col}_mean_target'].values for idx, encode_col in enumerate(encode_cols): train[f'{encode_col}_mean_target'] = tg_feats[:, idx] # for train_2 set - cv tg_feats = np.zeros((train_2.shape[0], len(encode_cols))) kfold = StratifiedKFold(n_splits=n_fold, random_state=1024, shuffle=True) for _, (train_index, val_index) in enumerate(kfold.split(train_2[encode_cols], train_2[target_col])): df_train, df_val = train_2.iloc[train_index], train_2.iloc[val_index] for idx, col in enumerate(encode_cols): target_mean_dict = df_train.groupby(col)[target_col].mean() if df_val[f'{col}_mean_target'].insull.any(): df_val[f'{col}_mean_target'] = df_val[col].map(target_mean_dict) tg_feats[val_index, idx] = df_val[f'{col}_mean_target'].values for idx, encode_col in enumerate(encode_cols): train_2[f'{encode_col}_mean_target'] = tg_feats[:, idx] # for testing set for col in encode_cols: target_mean_dict = train.groupby(col)[target_col].mean() test[f'{col}_mean_target'] = test[col].map(target_mean_dict) return train, train_2, test features = ['house_exist', 'debt_loan_ratio', 'industry', 'title'] train_1, train_2, test = gen_target_encoding_feats(train_1, train_2, test, features, ['isDefault'], n_fold=10)检查错误和警告并修改

import seaborn as sns corrmat = df.corr() top_corr_features = corrmat.index plt.figure(figsize=(16,16)) #plot heat map g=sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdYlGn") plt.show() sns.set_style('whitegrid') sns.countplot(x='target',data=df,palette='RdBu_r') plt.show() dataset = pd.get_dummies(df, columns = ['sex', 'cp', 'fbs','restecg', 'exang', 'slope', 'ca', 'thal']) from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler standardScaler = StandardScaler() columns_to_scale = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak'] dataset[columns_to_scale] = standardScaler.fit_transform(dataset[columns_to_scale]) dataset.head() y = dataset['target'] X = dataset.drop(['target'], axis=1) from sklearn.model_selection import cross_val_score knn_scores = [] for k in range(1, 21): knn_classifier = KNeighborsClassifier(n_neighbors=k) score = cross_val_score(knn_classifier, X, y, cv=10) knn_scores.append(score.mean()) plt.plot([k for k in range(1, 21)], knn_scores, color='red') for i in range(1, 21): plt.text(i, knn_scores[i - 1], (i, knn_scores[i - 1])) plt.xticks([i for i in range(1, 21)]) plt.xlabel('Number of Neighbors (K)') plt.ylabel('Scores') plt.title('K Neighbors Classifier scores for different K values') plt.show() knn_classifier = KNeighborsClassifier(n_neighbors = 12) score=cross_val_score(knn_classifier,X,y,cv=10) score.mean() from sklearn.ensemble import RandomForestClassifier randomforest_classifier= RandomForestClassifier(n_estimators=10) score=cross_val_score(randomforest_classifier,X,y,cv=10) score.mean()的roc曲线的代码

最新推荐

recommend-type

五子棋wuziq.zip

五子棋游戏想必大家都非常熟悉,游戏规则十分简单。游戏开始后,玩家在游戏设置中选择人机对战,则系统执黑棋,玩家自己执白棋。双方轮流下一棋,先将横、竖或斜线的5个或5个以上同色棋子连成不间断的一排者为胜。 【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。 【技术】 Java、Python、Node.js、Spring Boot、Django、Express、MySQL、PostgreSQL、MongoDB、React、Angular、Vue、Bootstrap、Material-UI、Redis、Docker、Kubernetes
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

python中从Excel中取的列没有了0

可能是因为Excel中的列被格式化为数字,而数字前导的0被省略了。可以在Excel中将列的格式更改为文本,这样就会保留数字前导的0。另外,在Python中读取Excel时,可以将列的数据类型指定为字符串,这样就可以保留数字前导的0。例如: ```python import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx', dtype={'列名': str}) # 输出列数据 print(df['列名']) ``` 其中,`dtype={'列名': str}`表示将列名为“列名”的列的数据类型指定为字符串。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。