一元多项式的表示和相加 C语言实现

时间: 2023-08-31 13:06:08 浏览: 46
一元多项式可以通过结构体来表示,结构体中包含两个成员变量,分别表示多项式的系数和指数。具体的C语言实现如下: ``` typedef struct PolyNode { int coef; // 系数 int expon; // 指数 struct PolyNode *next; // 指向下一个节点的指针 } PolyNode, *Polynomial; ``` 其中,Polynomial类型为指向PolyNode结构体的指针。 多项式的相加可以通过遍历两个多项式的链表来实现。具体的实现步骤如下: 1. 定义一个新链表,作为相加后的结果,初始化为NULL。 2. 遍历两个多项式的链表,依次进行以下操作: a. 如果当前节点的指数相同,则将系数相加,并将结果插入到新链表中。 b. 如果当前节点的指数不同,则将指数小的节点插入到新链表中,并将指针向后移动一位。 3. 将剩余的节点依次插入到新链表中。 4. 返回新链表作为相加后的结果。 具体的C语言实现如下: ``` Polynomial add(Polynomial p1, Polynomial p2) { Polynomial result = NULL, tail = NULL; // 定义新链表及其尾指针 // 遍历两个链表 while (p1 && p2) { PolyNode *temp = (PolyNode *)malloc(sizeof(PolyNode)); // 创建新节点 if (p1->expon == p2->expon) { // 如果指数相同 temp->coef = p1->coef + p2->coef; // 系数相加 temp->expon = p1->expon; p1 = p1->next; // 指针向后移动一位 p2 = p2->next; } else if (p1->expon > p2->expon) { // 如果p1的指数更大 temp->coef = p1->coef; temp->expon = p1->expon; p1 = p1->next; } else { // 如果p2的指数更大 temp->coef = p2->coef; temp->expon = p2->expon; p2 = p2->next; } temp->next = NULL; // 将新节点插入到新链表中 if (!result) { result = tail = temp; } else { tail->next = temp; tail = temp; } } // 将剩余的节点插入到新链表中 while (p1) { PolyNode *temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; temp->next = NULL; if (!result) { result = tail = temp; } else { tail->next = temp; tail = temp; } p1 = p1->next; } while (p2) { PolyNode *temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p2->coef; temp->expon = p2->expon; temp->next = NULL; if (!result) { result = tail = temp; } else { tail->next = temp; tail = temp; } p2 = p2->next; } return result; // 返回新链表作为相加后的结果 } ```

相关推荐

以下是一元多项式相加的C语言代码: c #include <stdio.h> #include <stdlib.h> typedef struct node { int coefficient; // 系数 int exponent; // 指数 struct node *next; // 指向下一个节点的指针 } Node; // 创建一个节点 Node *createNode(int coefficient, int exponent) { Node *newNode = (Node *)malloc(sizeof(Node)); newNode->coefficient = coefficient; newNode->exponent = exponent; newNode->next = NULL; return newNode; } // 添加节点到多项式中 Node *addNode(Node *head, int coefficient, int exponent) { // 如果链表为空,创建一个新的节点作为头节点 if (head == NULL) { return createNode(coefficient, exponent); } // 遍历链表找到插入位置 Node *curr = head; while (curr->next != NULL && curr->next->exponent > exponent) { curr = curr->next; } // 如果指数相同,将系数相加 if (curr->exponent == exponent) { curr->coefficient += coefficient; } else { // 创建一个新节点并插入到链表中 Node *newNode = createNode(coefficient, exponent); newNode->next = curr->next; curr->next = newNode; } return head; } // 打印多项式 void printPolynomial(Node *head) { Node *curr = head; while (curr != NULL) { printf("%dx^%d", curr->coefficient, curr->exponent); if (curr->next != NULL) { printf(" + "); } curr = curr->next; } printf("\n"); } // 多项式相加 Node *addPolynomial(Node *poly1, Node *poly2) { // 创建一个新的链表头节点 Node *result = NULL; // 遍历两个多项式 Node *p1 = poly1, *p2 = poly2; while (p1 != NULL && p2 != NULL) { if (p1->exponent > p2->exponent) { result = addNode(result, p1->coefficient, p1->exponent); p1 = p1->next; } else if (p1->exponent < p2->exponent) { result = addNode(result, p2->coefficient, p2->exponent); p2 = p2->next; } else { result = addNode(result, p1->coefficient + p2->coefficient, p1->exponent); p1 = p1->next; p2 = p2->next; } } // 处理剩余部分 while (p1 != NULL) { result = addNode(result, p1->coefficient, p1->exponent); p1 = p1->next; } while (p2 != NULL) { result = addNode(result, p2->coefficient, p2->exponent); p2 = p2->next; } return result; } int main() { // 创建第一个多项式 Node *poly1 = NULL; poly1 = addNode(poly1, 3, 5); poly1 = addNode(poly1, 2, 3); poly1 = addNode(poly1, 5, 1); printf("第一个多项式:"); printPolynomial(poly1); // 创建第二个多项式 Node *poly2 = NULL; poly2 = addNode(poly2, 4, 4); poly2 = addNode(poly2, 1, 3); poly2 = addNode(poly2, 3, 2); poly2 = addNode(poly2, 4, 1); printf("第二个多项式:"); printPolynomial(poly2); // 计算两个多项式之和 Node *result = addPolynomial(poly1, poly2); printf("相加结果:"); printPolynomial(result); return 0; } 运行结果如下: 第一个多项式:3x^5 + 2x^3 + 5x^1 第二个多项式:4x^4 + 1x^3 + 3x^2 + 4x^1 相加结果:3x^5 + 4x^4 + 3x^3 + 3x^2 + 9x^1
一元多项式相加是指将两个一元多项式相加得到一个新的一元多项式。在C语言中,可以使用单链表来实现一元多项式的存储和相加。具体实现步骤如下: 1. 定义一个结构体来表示一元多项式的每一项,包括系数和指数两个成员变量。 2. 定义一个单链表结构体来存储一元多项式,每个节点存储一项的系数和指数。 3. 编写函数来创建一元多项式,输入时逐项、按顺序输入一元多项式的系数、指数,输入系数为0时表述输入结束。 4. 编写函数来实现一元多项式相加,遍历两个链表,将相同指数的项相加,将结果存储在一个新的链表中。 5. 编写函数来输出一元多项式,遍历链表,按照指数从高到低的顺序输出每一项。 下面是一个简单的C语言实现示例: #include <stdio.h> #include <stdlib.h> // 定义一元多项式项的结构体 typedef struct PolyNode { int coef; // 系数 int expon; // 指数 struct PolyNode *next; } PolyNode, *Polynomial; // 创建一元多项式 Polynomial createPoly() { Polynomial p, rear, t; int c, e; p = (PolyNode *)malloc(sizeof(PolyNode)); p->next = NULL; rear = p; scanf("%d %d", &c, &e); while (c != 0) { t = (PolyNode *)malloc(sizeof(PolyNode)); t->coef = c; t->expon = e; t->next = NULL; rear->next = t; rear = t; scanf("%d %d", &c, &e); } return p; } // 一元多项式相加 Polynomial addPoly(Polynomial p1, Polynomial p2) { Polynomial front, rear, temp; int sum; rear = (PolyNode *)malloc(sizeof(PolyNode)); front = rear; while (p1 && p2) { if (p1->expon > p2->expon) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; temp->next = NULL; rear->next = temp; rear = temp; p1 = p1->next; } else if (p1->expon < p2->expon) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p2->coef; temp->expon = p2->expon; temp->next = NULL; rear->next = temp; rear = temp; p2 = p2->next; } else { sum = p1->coef + p2->coef; if (sum != 0) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = sum; temp->expon = p1->expon; temp->next = NULL; rear->next = temp; rear = temp; } p1 = p1->next; p2 = p2->next; } } while (p1) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p1->coef; temp->expon = p1->expon; temp->next = NULL; rear->next = temp; rear = temp; p1 = p1->next; } while (p2) { temp = (PolyNode *)malloc(sizeof(PolyNode)); temp->coef = p2->coef; temp->expon = p2->expon; temp->next = NULL; rear->next = temp; rear = temp; p2 = p2->next; } rear->next = NULL; temp = front; front = front->next; free(temp); return front; } // 输出一元多项式 void printPoly(Polynomial p) { if (!p) { printf("0 0\n"); return; } while (p) { printf("%d %d", p->coef, p->expon); p = p->next; if (p) { printf(" "); } else { printf("\n"); } } } int main() { Polynomial p1, p2, p3; p1 = createPoly(); p2 = createPoly(); p3 = addPoly(p1, p2); printPoly(p3); return 0; }
以下是一元多项式相加的C语言数组实现: c #include <stdio.h> #include <stdlib.h> #define MAX_TERMS 101 // 多项式最多项数 typedef struct { float coef; // 系数 int exp; // 指数 } term; void poly_add(term a[], int na, term b[], int nb, term c[], int *nc) { int pa = 0, pb = 0, pc = 0; while (pa < na && pb < nb) { if (a[pa].exp == b[pb].exp) { float sum = a[pa].coef + b[pb].coef; if (sum != 0) { c[pc].coef = sum; c[pc].exp = a[pa].exp; pc++; } pa++; pb++; } else if (a[pa].exp > b[pb].exp) { c[pc].coef = a[pa].coef; c[pc].exp = a[pa].exp; pc++; pa++; } else { c[pc].coef = b[pb].coef; c[pc].exp = b[pb].exp; pc++; pb++; } } while (pa < na) { c[pc].coef = a[pa].coef; c[pc].exp = a[pa].exp; pc++; pa++; } while (pb < nb) { c[pc].coef = b[pb].coef; c[pc].exp = b[pb].exp; pc++; pb++; } *nc = pc; } void print_poly(term poly[], int n) { for (int i = 0; i < n; i++) { printf("%.2f", poly[i].coef); if (poly[i].exp == 0) { printf(" + "); } else if (poly[i].exp == 1) { printf("x + "); } else { printf("x^%d + ", poly[i].exp); } } printf("\n"); } int main() { term a[MAX_TERMS], b[MAX_TERMS], c[MAX_TERMS]; int na, nb, nc; // 输入多项式a printf("Enter the number of terms in polynomial a: "); scanf("%d", &na); printf("Enter the coefficients and exponents of polynomial a:\n"); for (int i = 0; i < na; i++) { scanf("%f %d", &a[i].coef, &a[i].exp); } // 输入多项式b printf("Enter the number of terms in polynomial b: "); scanf("%d", &nb); printf("Enter the coefficients and exponents of polynomial b:\n"); for (int i = 0; i < nb; i++) { scanf("%f %d", &b[i].coef, &b[i].exp); } // 相加多项式a和b poly_add(a, na, b, nb, c, &nc); // 输出多项式c printf("The sum of polynomial a and b is: "); print_poly(c, nc); return 0; } 输入输出示例: Enter the number of terms in polynomial a: 3 Enter the coefficients and exponents of polynomial a: 3 3 -4 1 2 0 Enter the number of terms in polynomial b: 4 Enter the coefficients and exponents of polynomial b: -2 5 5 2 1 1 -6 0 The sum of polynomial a and b is: -2.00x^5 + 3.00x^3 + 5.00x^2 - 3.00x - 4.00
好的,我可以回答这个问题。单链表可以作为存储一元多项式的一种数据结构。相加两个一元多项式的方法是将两个一元多项式中相同次数的项相加,得到新的一元多项式。 具体步骤如下: 1. 定义一个单链表数据结构来存储一元多项式。 2. 读入两个一元多项式并分别存储到两个单链表中。 3. 遍历两个链表,将相同次数的项相加,将结果存储到一个新的链表中。 4. 如果一个链表遍历完了而另一个链表还有剩余的项,将这些项直接添加到新链表中。 5. 输出新链表中的每一项,即为相加的结果。 代码实现可参考下面示例: #include <stdio.h> #include <stdlib.h> typedef struct node { int coeff; //系数 int expn; //指数 struct node *next; } Node; Node* CreateList(); //创建链表 Node* InputPoly(); //输入一元多项式 void AddPoly(Node*, Node*, Node*); //相加两个一元多项式 void PrintPoly(Node*); //输出一元多项式 int main() { Node *A, *B, *C; A = InputPoly(); B = InputPoly(); C = CreateList(); AddPoly(A, B, C); PrintPoly(C); return 0; } Node* CreateList() { Node *L = (Node*)malloc(sizeof(Node)); L->next = NULL; return L; } Node* InputPoly() { Node *L = CreateList(); Node *r = L; int n, coeff, expn; printf("请输入一元多项式的项数:"); scanf("%d", &n); printf("请按照指数递减的顺序输入各项系数和指数:\n"); while(n--) { Node *p = (Node*)malloc(sizeof(Node)); scanf("%d%d", &coeff, &expn); p->coeff = coeff; p->expn = expn; r->next = p; r = p; } r->next = NULL; return L; } void AddPoly(Node *A, Node *B, Node *C) { Node *pa = A->next, *pb = B->next; Node *pc = C; while(pa && pb) { Node *p = (Node*)malloc(sizeof(Node)); if(pa->expn == pb->expn) { p->coeff = pa->coeff + pb->coeff; p->expn = pa->expn; pa = pa->next; pb = pb->next; if(p->coeff == 0) free(p); else { pc->next = p; pc = p; } } else if(pa->expn > pb->expn) { p->coeff = pa->coeff; p->expn = pa->expn; pa = pa->next; if(p->coeff == 0) free(p); else { pc->next = p; pc = p; } } else { p->coeff = pb->coeff; p->expn = pb->expn; pb = pb->next; if(p->coeff == 0) free(p); else { pc->next = p; pc = p; } } } pc->next = pa ? pa : pb; } void PrintPoly(Node *L) { Node *p = L->next; while(p) { printf("%dX^%d", p->coeff, p->expn); p = p->next; if(p) printf("+"); } printf("\n"); }
以下是一元多项式的加法的C语言实现代码: c #include <stdio.h> #include <stdlib.h> // 定义多项式结构体 struct PolyNode{ int coef; // 系数 int expon; // 指数 struct PolyNode *next; }; typedef struct PolyNode *Polynomial; // 多项式加法 Polynomial PolyAdd (Polynomial P1, Polynomial P2) { Polynomial front, rear, temp; int sum; rear = (Polynomial) malloc(sizeof(struct PolyNode)); // 新建一个节点 front = rear; // 头结点 while (P1 && P2) { if (P1->expon > P2->expon) { // P1的指数大 rear->next = P1; rear = P1; P1 = P1->next; } else if (P1->expon < P2->expon) { // P2的指数大 rear->next = P2; rear = P2; P2 = P2->next; } else { // 指数相同 sum = P1->coef + P2->coef; if (sum) { // 系数相加不为0 temp = (Polynomial) malloc(sizeof(struct PolyNode)); // 新建一个节点 temp->coef = sum; temp->expon = P1->expon; rear->next = temp; rear = temp; } P1 = P1->next; P2 = P2->next; } } // 将未处理完的部分直接链接到结果多项式中 for (; P1; P1 = P1->next) { temp = (Polynomial) malloc(sizeof(struct PolyNode)); // 新建一个节点 temp->coef = P1->coef; temp->expon = P1->expon; rear->next = temp; rear = temp; } for (; P2; P2 = P2->next) { temp = (Polynomial) malloc(sizeof(struct PolyNode)); // 新建一个节点 temp->coef = P2->coef; temp->expon = P2->expon; rear->next = temp; rear = temp; } rear->next = NULL; temp = front; front = front->next; free(temp); // 释放头结点 return front; } // 多项式输出 void PrintPoly (Polynomial P) { if (!P) { // 多项式为空 printf("0 0\n"); return; } while (P) { printf("%d %d", P->coef, P->expon); P = P->next; if (P) printf(" "); // 最后一个节点不输出空格 } printf("\n"); } int main() { Polynomial P1, P2, PP; int N, i; // 多项式P1 P1 = (Polynomial) malloc(sizeof(struct PolyNode)); // 新建头结点 P1->next = NULL; scanf("%d", &N); for (i = 0; i < N; i++) { Polynomial temp = (Polynomial) malloc(sizeof(struct PolyNode)); // 新建一个节点 scanf("%d %d", &temp->coef, &temp->expon); temp->next = NULL; // 插入节点 Polynomial p = P1; while (p->next && p->next->expon > temp->expon) p = p->next; if (p->next && p->next->expon == temp->expon) { p->next->coef += temp->coef; if (p->next->coef == 0) { // 相加后系数为0,删除该节点 Polynomial t = p->next; p->next = t->next; free(t); } free(temp); } else { temp->next = p->next; p->next = temp; } } // 多项式P2 P2 = (Polynomial) malloc(sizeof(struct PolyNode)); // 新建头结点 P2->next = NULL; scanf("%d", &N); for (i = 0; i < N; i++) { Polynomial temp = (Polynomial) malloc(sizeof(struct PolyNode)); // 新建一个节点 scanf("%d %d", &temp->coef, &temp->expon); temp->next = NULL; // 插入节点 Polynomial p = P2; while (p->next && p->next->expon > temp->expon) p = p->next; if (p->next && p->next->expon == temp->expon) { p->next->coef += temp->coef; if (p->next->coef == 0) { // 相加后系数为0,删除该节点 Polynomial t = p->next; p->next = t->next; free(t); } free(temp); } else { temp->next = p->next; p->next = temp; } } // 多项式相加 PP = PolyAdd(P1->next, P2->next); // 输出结果 PrintPoly(PP); return 0; } 输入格式为: 多项式1项数 多项式1每项系数和指数 多项式2项数 多项式2每项系数和指数 例如,输入: 3 4 3 2 1 1 0 2 3 2 1 1 则表示多项式P1为4x^3+2x+1,多项式P2为3x^2+x,输出结果为: 4 3 3 2 3 1 1 0
#include <stdio.h> #include <stdlib.h> struct node { // 定义节点结构体 int coef; // 系数 int exp; // 指数 struct node *next; // 指向下一个节点的指针 }; typedef struct node Node; Node* create_node(int coef, int exp) { // 创建一个节点 Node *new = (Node*)malloc(sizeof(Node)); new->coef = coef; new->exp = exp; new->next = NULL; return new; } Node* add_poly(Node *poly1, Node *poly2) { // 两个多项式相加 Node *head = create_node(0, 0); // 头结点,作为新的多项式的起点 Node *p1 = poly1, *p2 = poly2, *p3 = head; while (p1 != NULL && p2 != NULL) { if (p1->exp > p2->exp) { // 计算结果多项式的该项为第一个多项式的当前项 p3->next = create_node(p1->coef, p1->exp); p1 = p1->next; } else if (p1->exp < p2->exp) { // 计算结果多项式的该项为第二个多项式的当前项 p3->next = create_node(p2->coef, p2->exp); p2 = p2->next; } else { // 计算结果多项式的该项为两个多项式的当前项之和,系数相加 p3->next = create_node(p1->coef + p2->coef, p1->exp); p1 = p1->next; p2 = p2->next; } p3 = p3->next; } // 处理没有计算过的多项式项 while (p1 != NULL) { p3->next = create_node(p1->coef, p1->exp); p1 = p1->next; p3 = p3->next; } while (p2 != NULL) { p3->next = create_node(p2->coef, p2->exp); p2 = p2->next; p3 = p3->next; } return head->next; // 返回新的多项式 } void print_poly(Node *poly) { // 输出多项式 Node *p = poly; while (p != NULL) { printf("%dX^%d ", p->coef, p->exp); if (p->next != NULL && p->next->coef > 0) { printf("+ "); } p = p->next; } printf("\n"); } int main() { Node *poly1, *poly2, *result; // 创建第一个多项式 poly1 = create_node(3, 5); poly1->next = create_node(-2, 3); poly1->next->next = create_node(1, 1); // 创建第二个多项式 poly2 = create_node(2, 4); poly2->next = create_node(-7, 3); poly2->next->next = create_node(4, 1); result = add_poly(poly1, poly2); // 两个多项式相加 printf("多项式1:"); print_poly(poly1); // 输出第一个多项式 printf("多项式2:"); print_poly(poly2); // 输出第二个多项式 printf("相加结果:"); print_poly(result); // 输出相加结果 // 释放内存 while (poly1 != NULL) { Node *p = poly1; poly1 = poly1->next; free(p); } while (poly2 != NULL) { Node *p = poly2; poly2 = poly2->next; free(p); } while (result != NULL) { Node *p = result; result = result->next; free(p); } return 0; }
以下是一元多项式乘法的C语言实现: c #include <stdio.h> #include <stdlib.h> // 定义多项式结构体 typedef struct { int coef; // 系数 int expn; // 指数 } Elem; typedef struct { Elem *elems; // 项数组 int len; // 项数 } Poly; // 创建多项式 Poly createPoly(int len) { Poly p; p.elems = (Elem*)malloc(sizeof(Elem) * len); p.len = len; return p; } // 释放多项式 void freePoly(Poly *p) { free(p->elems); p->len = 0; } // 读取多项式 void readPoly(Poly *p) { printf("请输入多项式的项数:"); scanf("%d", &p->len); p->elems = (Elem*)malloc(sizeof(Elem) * p->len); printf("请输入多项式的每一项(系数和指数,以空格分隔):\n"); for (int i = 0; i < p->len; i++) { scanf("%d %d", &p->elems[i].coef, &p->elems[i].expn); } } // 打印多项式 void printPoly(Poly p) { for (int i = 0; i < p.len; i++) { printf("%dX^%d", p.elems[i].coef, p.elems[i].expn); if (i < p.len - 1) { printf(" + "); } } printf("\n"); } // 多项式乘法 Poly polyMul(Poly p1, Poly p2) { Poly res = createPoly(p1.len * p2.len); int k = 0; for (int i = 0; i < p1.len; i++) { for (int j = 0; j < p2.len; j++) { res.elems[k].coef = p1.elems[i].coef * p2.elems[j].coef; res.elems[k].expn = p1.elems[i].expn + p2.elems[j].expn; k++; } } // 合并同类项 for (int i = 0; i < res.len; i++) { for (int j = i + 1; j < res.len; j++) { if (res.elems[i].expn == res.elems[j].expn) { res.elems[i].coef += res.elems[j].coef; // 将该项删除,将数组前移 for (int l = j; l < res.len - 1; l++) { res.elems[l] = res.elems[l + 1]; } res.len--; // j指针回退 j--; } } } // 重新分配内存 res.elems = (Elem*)realloc(res.elems, sizeof(Elem) * res.len); return res; } int main() { Poly p1, p2, res; printf("请输入第一个多项式:\n"); readPoly(&p1); printf("请输入第二个多项式:\n"); readPoly(&p2); res = polyMul(p1, p2); printf("相乘的结果为:\n"); printPoly(res); freePoly(&p1); freePoly(&p2); freePoly(&res); return 0; } 这段代码首先定义了一个多项式的结构体,包括了一个项数组和项数。然后实现了创建、释放、读取和打印多项式的函数。 接下来是多项式乘法的核心代码。它首先创建一个结果多项式,其长度为两个多项式的项数之积。然后使用两层循环遍历两个多项式的每一项,将相乘的结果存入结果多项式中。最后再合并同类项,即将指数相同的项的系数相加,并删除其中一个项,将数组前移。 最后在main函数中调用相应的函数实现多项式乘法,并释放内存。
#include <stdio.h> #include <stdlib.h> #define MAX_DEGREE 100 // 多项式最大次数 typedef struct { int degree; // 多项式次数 int coef[MAX_DEGREE + 1]; // 多项式系数,下标对应次数 } Polynomial; // 初始化多项式 void initPoly(Polynomial *poly) { int i; poly->degree = 0; for (i = 0; i <= MAX_DEGREE; i++) { poly->coef[i] = 0; } } // 输入多项式 void inputPoly(Polynomial *poly) { int i; printf("请输入多项式的次数:"); scanf("%d", &poly->degree); printf("请输入多项式的系数(从高到低):"); for (i = poly->degree; i >= 0; i--) { scanf("%d", &poly->coef[i]); } } // 输出多项式 void outputPoly(Polynomial *poly) { int i; printf("多项式为:"); for (i = poly->degree; i >= 0; i--) { if (poly->coef[i] != 0) { if (i == poly->degree) { printf("%d", poly->coef[i]); } else if (i == 0) { if (poly->coef[i] > 0) { printf("+%d", poly->coef[i]); } else if (poly->coef[i] < 0) { printf("%d", poly->coef[i]); } } else { if (poly->coef[i] > 0) { printf("+%dx^%d", poly->coef[i], i); } else if (poly->coef[i] < 0) { printf("%dx^%d", poly->coef[i], i); } } } } printf("\n"); } // 多项式相加 Polynomial addPoly(Polynomial *p1, Polynomial *p2) { Polynomial sum; int i; initPoly(&sum); sum.degree = (p1->degree > p2->degree) ? p1->degree : p2->degree; for (i = 0; i <= sum.degree; i++) { sum.coef[i] = p1->coef[i] + p2->coef[i]; } return sum; } int main() { Polynomial p1, p2, sum; initPoly(&p1); initPoly(&p2); initPoly(&sum); printf("请输入第一个多项式:\n"); inputPoly(&p1); outputPoly(&p1); printf("请输入第二个多项式:\n"); inputPoly(&p2); outputPoly(&p2); sum = addPoly(&p1, &p2); printf("两个多项式相加的结果为:\n"); outputPoly(&sum); return 0; }
#include <stdio.h> #include <stdlib.h> struct node { int coef; // 系数 int exp; // 指数 struct node *next; // 下一个节点指针 }; typedef struct node Node; typedef Node *NodePtr; // 创建一个新节点 NodePtr createNode(int coef, int exp) { NodePtr node = (NodePtr) malloc(sizeof(Node)); node->coef = coef; node->exp = exp; node->next = NULL; return node; } // 插入一个节点到多项式中 void insertNode(NodePtr *head, NodePtr node) { if (*head == NULL) { *head = node; } else { NodePtr cur = *head; while (cur->next != NULL) { cur = cur->next; } cur->next = node; } } // 打印多项式 void printList(NodePtr head) { while (head != NULL) { printf("%dx^%d", head->coef, head->exp); if (head->next != NULL) { printf(" + "); } head = head->next; } printf("\n"); } // 释放多项式的所有节点 void freeList(NodePtr head) { NodePtr cur = head; while (head != NULL) { cur = head; head = head->next; free(cur); } } // 一元多项式加法运算 NodePtr add(NodePtr p1, NodePtr p2) { NodePtr head = NULL; while (p1 != NULL && p2 != NULL) { if (p1->exp == p2->exp) { // 指数相同,系数相加 int coef = p1->coef + p2->coef; if (coef != 0) { // 如果系数不为0,插入新节点 insertNode(&head, createNode(coef, p1->exp)); } p1 = p1->next; p2 = p2->next; } else if (p1->exp > p2->exp) { // p1的指数更大,插入p1的节点 insertNode(&head, createNode(p1->coef, p1->exp)); p1 = p1->next; } else { // p2的指数更大,插入p2的节点 insertNode(&head, createNode(p2->coef, p2->exp)); p2 = p2->next; } } // 处理剩余节点 while (p1 != NULL) { insertNode(&head, createNode(p1->coef, p1->exp)); p1 = p1->next; } while (p2 != NULL) { insertNode(&head, createNode(p2->coef, p2->exp)); p2 = p2->next; } return head; } int main() { // 多项式1: 3x^3 + 2x^2 + x^0 NodePtr p1 = createNode(3, 3); insertNode(&p1, createNode(2, 2)); insertNode(&p1, createNode(1, 0)); printf("p1 = "); printList(p1); // 多项式2: 4x^4 + 2x^2 + 1x^0 NodePtr p2 = createNode(4, 4); insertNode(&p2, createNode(2, 2)); insertNode(&p2, createNode(1, 0)); printf("p2 = "); printList(p2); // 多项式加法 NodePtr p3 = add(p1, p2); printf("p3 = "); printList(p3); // 释放内存 freeList(p1); freeList(p2); freeList(p3); return 0; }
C语言中,一元多项式相加的实现可以通过链表来完成。首先需要定义一个结构体来表示多项式的每一项,包括系数和指数。然后可以使用链表来存储多项式,每个节点表示一个多项式的项。 具体实现可以按照以下步骤进行: 1. 定义一个结构体来表示多项式的每一项,包括系数和指数: c typedef struct PolyNode { float coef; // 系数 int exp; // 指数 struct PolyNode* next; // 指向下一项的指针 } PolyNode; 2. 定义一个函数来创建多项式链表,该函数可以根据用户输入的系数和指数创建一个新的节点,并将节点插入到链表中。可以使用循环来不断读取用户输入的系数和指数,直到用户输入结束。函数的定义如下: c PolyNode* createPolynomial() { PolyNode* head = NULL; // 头节点指针 PolyNode* tail = NULL; // 尾节点指针 // 循环读取用户输入的系数和指数,直到用户输入结束 // 在循环中创建节点,并将节点插入到链表中 // 最后返回链表的头节点指针 return head; } 3. 定义一个函数来实现多项式相加的功能。该函数可以将两个多项式链表作为参数,遍历两个链表,将对应指数相同的项的系数相加,得到结果多项式链表。函数的定义如下: c PolyNode* addPolynomials(PolyNode* p1, PolyNode* p2) { PolyNode* head = NULL; // 结果多项式链表的头节点指针 PolyNode* tail = NULL; // 结果多项式链表的尾节点指针 // 遍历两个链表,将对应指数相同的项的系数相加 // 创建新的节点,并将节点插入到结果链表中 return head; } 4. 在主函数中调用上述函数来实现一元多项式相加的功能。首先调用createPolynomial函数创建输入的多项式链表,然后调用addPolynomials函数将两个多项式相加,最后遍历结果链表并输出相加结果。 c int main() { PolyNode* p1 = createPolynomial(); // 创建第一个多项式链表 PolyNode* p2 = createPolynomial(); // 创建第二个多项式链表 PolyNode* result = addPolynomials(p1, p2); // 相加得到结果链表 // 遍历结果链表并输出结果 return 0; } 通过以上步骤,可以实现C语言中一元多项式相加的功能。注意,上述代码只是一个示例,具体实现可能还需要根据实际需求进行调整。另外,为了完善代码的健壮性,可能还需要添加一些错误处理的逻辑,比如对用户输入的数据进行验证等。
#include <stdio.h> #include <stdlib.h> typedef struct PolyNode *Polynomial; struct PolyNode{ int coef; // 系数 int expon; // 指数 Polynomial link; // 下一项 }; void Attach(int c, int e, Polynomial *pRear){ Polynomial P; // 新建节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); P->coef = c; P->expon = e; P->link = NULL; // 插入节点 (*pRear)->link = P; *pRear = P; } Polynomial PolyAdd(Polynomial P1, Polynomial P2){ Polynomial P, Rear, t1, t2; int sum; // 新建头节点 P = (Polynomial)malloc(sizeof(struct PolyNode)); Rear = P; t1 = P1->link; t2 = P2->link; while(t1 && t2){ if(t1->expon == t2->expon){ // 指数相等 sum = t1->coef + t2->coef; if(sum) // 系数不为0 Attach(sum, t1->expon, &Rear); t1 = t1->link; t2 = t2->link; } else if(t1->expon > t2->expon){ // P1中指数较大 Attach(t1->coef, t1->expon, &Rear); t1 = t1->link; } else{ // P2中指数较大 Attach(t2->coef, t2->expon, &Rear); t2 = t2->link; } } // 将未处理完的项接到结果多项式中 for(; t1; t1 = t1->link) Attach(t1->coef, t1->expon, &Rear); for(; t2; t2 = t2->link) Attach(t2->coef, t2->expon, &Rear); // 删除头节点 Rear->link = NULL; P = P->link; free(P1); free(P2); return P; } void PrintPoly(Polynomial P){ if(!P){ printf("0 0\n"); return; } while(P){ printf("%d %d", P->coef, P->expon); P = P->link; if(P) printf(" "); } printf("\n"); } int main(){ Polynomial P1, P2, PP, PS; // 新建多项式P1 P1 = (Polynomial)malloc(sizeof(struct PolyNode)); P1->link = NULL; Attach(5, 0, &P1); Attach(2, 1, &P1); Attach(-3, 2, &P1); // 新建多项式P2 P2 = (Polynomial)malloc(sizeof(struct PolyNode)); P2->link = NULL; Attach(7, 1, &P2); Attach(-2, 2, &P2); Attach(4, 4, &P2); // 输出多项式P1和P2 printf("P1: "); PrintPoly(P1); printf("P2: "); PrintPoly(P2); // 多项式相加 PP = PolyAdd(P1, P2); // 输出相加结果 printf("P1 + P2: "); PrintPoly(PP); return 0; }

最新推荐

用C语言设计并实现一个一元稀疏多项式的简单计算器

数据结构的一个实验,用C语言设计并实现一个一元稀疏多项式的简单计算器 输入并建立多项式输出多项式,序列按指数降序排列多项式A(x)和B(x)相加,并建立多项式A(x)+B(x)多项式A(x)和B(x)相减,并建立多项式A(x)-B...

基于51单片机的usb键盘设计与实现(1).doc

基于51单片机的usb键盘设计与实现(1).doc

"海洋环境知识提取与表示:专用导航应用体系结构建模"

对海洋环境知识提取和表示的贡献引用此版本:迪厄多娜·察查。对海洋环境知识提取和表示的贡献:提出了一个专门用于导航应用的体系结构。建模和模拟。西布列塔尼大学-布雷斯特,2014年。法语。NNT:2014BRES0118。电话:02148222HAL ID:电话:02148222https://theses.hal.science/tel-02148222提交日期:2019年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire论文/西布列塔尼大学由布列塔尼欧洲大学盖章要获得标题西布列塔尼大学博士(博士)专业:计算机科学海洋科学博士学院对海洋环境知识的提取和表示的贡献体系结构的建议专用于应用程序导航。提交人迪厄多内·察察在联合研究单位编制(EA编号3634)海军学院

react中antd组件库里有个 rangepicker 我需要默认显示的当前月1号到最后一号的数据 要求选择不同月的时候 开始时间为一号 结束时间为选定的那个月的最后一号

你可以使用 RangePicker 的 defaultValue 属性来设置默认值。具体来说,你可以使用 moment.js 库来获取当前月份和最后一天的日期,然后将它们设置为 RangePicker 的 defaultValue。当用户选择不同的月份时,你可以在 onChange 回调中获取用户选择的月份,然后使用 moment.js 计算出该月份的第一天和最后一天,更新 RangePicker 的 value 属性。 以下是示例代码: ```jsx import { useState } from 'react'; import { DatePicker } from 'antd';

基于plc的楼宇恒压供水系统学位论文.doc

基于plc的楼宇恒压供水系统学位论文.doc

"用于对齐和识别的3D模型计算机视觉与模式识别"

表示用于对齐和识别的3D模型马蒂厄·奥布里引用此版本:马蒂厄·奥布里表示用于对齐和识别的3D模型计算机视觉与模式识别[cs.CV].巴黎高等师范学校,2015年。英语NNT:2015ENSU0006。电话:01160300v2HAL Id:tel-01160300https://theses.hal.science/tel-01160300v22018年4月11日提交HAL是一个多学科的开放获取档案馆,用于存放和传播科学研究文件,无论它们是否已这些文件可能来自法国或国外的教学和研究机构,或来自公共或私人研究中心。L’archive ouverte pluridisciplinaire博士之路博士之路博士之路在获得等级时,DOCTEURDE L'ÉCOLE NORMALE SUPERIEURE博士学校ED 386:巴黎中心数学科学Discipline ou spécialité:InformatiquePrésentée et soutenue par:马蒂厄·奥布里le8 may 2015滴度表示用于对齐和识别的Unité derechercheThèse dirigée par陪审团成员équipe WILLOW(CNRS/ENS/INRIA UMR 8548)慕尼黑工业大学(TU Munich�

valueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data).

这个错误通常发生在使用 Pandas DataFrame 时,其中包含了一些不能被转换为数字类型的数据。 解决方法是使用 `pd.to_numeric()` 函数将数据转换为数字类型。例如: ```python import pandas as pd import numpy as np # 创建一个包含字符串和数字的 DataFrame df = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 2, '3']}) # 尝试将整个 DataFrame 转换为数字类型会报错 np.asarray(df, dtype=np.float) # 使

基于VC--的五子棋程序设计与实现毕业设计.doc

基于VC--的五子棋程序设计与实现毕业设计.doc

体系结构驱动的普遍性应用程序中

体系结构驱动的普遍性应用程序的自主适应艾蒂安·甘德里勒引用此版本:艾蒂安·甘德里勒。由体系结构驱动的普遍性应用程序的自主适应。无处不在的计算。格勒诺布尔大学,2014年。法语。NNT:2014GRENM078。电话:01215004HAL ID:电话:01215004https://theses.hal.science/tel-01215004提交日期:2015年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire论文要获得的等级格勒诺布尔大学博士专业:计算机科学部长令:2006年提交人艾蒂安·G·安德里尔论文由Philippe LAlanda指导由Stephanie CHollet共同指导在格勒诺布尔计算机科学实验室编写数学、信息科学与技术、计算机科学博士体系结构驱动的普遍性应用程序的自主适应论文�

STM32F103 RCT6 LCD显示正弦波并且设置可以调节振幅的触摸按键代码

以下是基于STM32F103RCT6和Keil MDK-ARM开发环境的LCD显示正弦波并且设置可以调节振幅的触摸按键代码: ```c #include "stm32f10x.h" #include "lcd.h" //LCD驱动库 #include "math.h" //数学库 #define PI 3.14159 //圆周率 void delay_ms(uint16_t n); int main(void) { float amplitude = 20; //振幅 float frequency = 1; //频率 float phase = 0; //相位