VGG19卷积神经网络结构图
时间: 2023-09-04 16:15:11 浏览: 121
以下是VGG19卷积神经网络的结构图:
```
Input
|
Convolution (64 filters, 3x3 kernel, same padding)
|
|
Max Pooling (2x2 pool size)
|
Convolution (128 filters, 3x3 kernel, same padding)
|
|
Max Pooling (2x2 pool size)
|
Convolution (256 filters, 3x3 kernel, same padding)
|
Convolution (256 filters, 3x3 kernel, same padding)
|
|
Max Pooling (2x2 pool size)
|
Convolution (512 filters, 3x3 kernel, same padding)
|
Convolution (512 filters, 3x3 kernel, same padding)
|
|
Max Pooling (2x2 pool size)
|
Convolution (512 filters, 3x3 kernel, same padding)
|
Convolution (512 filters, 3x3 kernel, same padding)
|
|
Max Pooling (2x2 pool size)
|
Flatten
|
Dense (4096 units)
|
Dense (4096 units)
|
Dense (1000 units)
|
Output
```
注:卷积层的 filter 数量和 kernel 大小可能会因为不同的实现而有所不同。此处仅提供了一个通用的参考值。
阅读全文
相关推荐
![npy](https://img-home.csdnimg.cn/images/20250102104920.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![-](https://img-home.csdnimg.cn/images/20241231044736.png)