简答题 在虚拟机里面编写WordCount示例程序
时间: 2024-12-10 15:27:01 浏览: 7
wordcount-mapreduce:Hadoop MapReduce WordCount 示例应用程序
在虚拟机中编写 WordCount 示例程序通常是在Hadoop MapReduce框架下完成的,因为WordCount是一个经典的MapReduce任务,用于计算文本文件中单词的频率。以下是简单的步骤:
1. **安装Hadoop**:首先需要在你的虚拟机上安装Hadoop环境,包括HDFS(分布式文件系统)和YARN(资源管理器)。
2. **创建Mapper**:创建一个Mapper类,它负责读取输入数据行,解析出单词,并对每个单词调用`emit()`函数将键值对发送到Reducer。例如:
```java
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
```
3. **创建Reducer**:Reducer接收Mapper发送过来的所有相同键的值,然后进行累加。这里我们只需要简单地合并计数:
```java
public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
```
4. **配置Job**:在主程序中配置JobConf,并指定Mapper、Reducer类以及输入和输出路径:
```java
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordCountMapper.class);
job.setCombinerClass(WordCountReducer.class); // 可选,优化减少网络传输
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path("input_path"));
FileOutputFormat.setOutputPath(job, new Path("output_path"));
```
5. **提交并运行**:最后,调用`job.waitForCompletion(true)`来启动作业。
阅读全文