${sizerequired} Evaluate 2048*1024 runPass fs_size=$(df | grep -w ${USERDATAMOUNTPOINT} | awk '{print $4}') ${output} run if [ \${fs_size} -le ${sizerequired} ];then echo "${check_magic}";fi ${count} get count ${output} ${check_magic} 这段话是什么意思

时间: 2023-11-01 19:52:36 浏览: 34
这段话是一个脚本的片段,用于检查磁盘空间是否满足要求,并统计 `${check_magic}` 在输出中的出现次数。 具体解释如下: 1. `${sizerequired}` 是一个变量,用于指定所需的磁盘空间大小。 2. `Evaluate 2048*1024` 是一个命令,用于计算表达式 `2048*1024` 的结果,即 2097152。 3. `runPass` 是一个命令,用于执行一个子任务。在这个子任务中,`fs_size=$(df | grep -w ${USERDATAMOUNTPOINT} | awk '{print $4}')` 是一个命令,通过调用 `df` 命令获取磁盘空间信息,并使用 `grep` 和 `awk` 过滤和提取出可用磁盘空间大小,并将其存储在变量 `fs_size` 中。 4. `${output}` 是一个占位符,表示输出结果的位置。 5. `run if [ \${fs_size} -le ${sizerequired} ];then echo "${check_magic}";fi` 是一个条件语句,如果可用磁盘空间 `${fs_size}` 小于或等于所需大小 `${sizerequired}`,则输出 `${check_magic}`。 6. `${count} get count ${output} ${check_magic}` 是一个命令,用于统计输出中 `${check_magic}` 的出现次数。 总结起来,这段脚本的作用是计算磁盘空间是否满足要求,并统计输出中 `${check_magic}` 的出现次数。
相关问题

car_type == 2 || cValue.length < 6 || (type === 1 && index < 6) || type === 3什么意思

&& cValue.indexOf(' ') !== -1) This code is incomplete and does not make logical sense as it is missing an ending parenthesis and an ending bracket, causing a syntax error. However, assuming the missing code is added, this is a conditional statement that checks three conditions using logical operators: 1. car_type == 2 - checks if the value of car_type is equal to 2 2. cValue.length < 6 - checks if the length of cValue is less than 6 3. (type === 1 && cValue.indexOf(' ') !== -1) - checks if the value of type is equal to 1 AND if there is a space character in cValue The || (OR) operator is used to specify that any one of these conditions can be true for the entire statement to evaluate to true. Therefore, if any of the three conditions are true, the statement will evaluate to true.

请将此代码修改为tensorflow2.7,cuda11.2版本的代码 import tensorflow as tf from tensorflow import keras from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, ReLU from tensorflow.keras.utils import to_categorical # 加载MNIST数据集 (x_train, y_train), (x_test, y_test) = mnist.load_data() # 数据预处理 x_train = x_train.astype("float32") / 255.0 x_test = x_test.astype("float32") / 255.0 x_train = tf.expand_dims(x_train, axis=3) x_test = tf.expand_dims(x_test, axis=3) y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10) # 构建LeNet-5模型 model = Sequential([ Conv2D(6, kernel_size=3, strides=1), MaxPooling2D(pool_size=2, strides=2), ReLU(), Conv2D(16, kernel_size=3, strides=1), MaxPooling2D(pool_size=2, strides=2), ReLU(), Flatten(), Dense(units=120, activation='relu'), Dense(units=84, activation='relu'), Dense(units=10, activation='softmax') ]) # 编译模型 model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # 训练模型 model.fit(x_train, y_train, batch_size=128, epochs=30, validation_data=(x_test, y_test)) # 在测试集上输出精度 test_loss, test_acc = model.evaluate(x_test, y_test) print('Test accuracy:', test_acc)

这是一个类似的 TensorFlow 2.7 和 CUDA 11.2 版本的代码示例: ```python import tensorflow as tf from tensorflow import keras from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, ReLU from tensorflow.keras.utils import to_categorical # Set GPU device gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: tf.config.experimental.set_visible_devices(gpus[0], 'GPU') tf.config.experimental.set_memory_growth(gpus[0], True) print("Using GPU:", tf.test.gpu_device_name()) except RuntimeError as e: print(e) # Load MNIST dataset (x_train, y_train), (x_test, y_test) = mnist.load_data() # Preprocess data x_train = x_train.astype("float32") / 255.0 x_test = x_test.astype("float32") / 255.0 x_train = tf.expand_dims(x_train, axis=3) x_test = tf.expand_dims(x_test, axis=3) y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10) # Define LeNet-5 model model = Sequential([ Conv2D(6, kernel_size=3, strides=1), MaxPooling2D(pool_size=2, strides=2), ReLU(), Conv2D(16, kernel_size=3, strides=1), MaxPooling2D(pool_size=2, strides=2), ReLU(), Flatten(), Dense(units=120, activation='relu'), Dense(units=84, activation='relu'), Dense(units=10, activation='softmax') ]) # Compile model model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) # Train model model.fit(x_train, y_train, batch_size=128, epochs=30, validation_data=(x_test, y_test)) # Evaluate model on test set test_loss, test_acc = model.evaluate(x_test, y_test) print('Test accuracy:', test_acc) ``` 这个代码实现了一个 LeNet-5 模型,用于识别 MNIST 手写数字。它使用了 TensorFlow 2.7 和 CUDA 11.2 版本,并且在 GPU 上训练模型。在代码中,我们首先检查是否有可用的 GPU 设备,并设置 TensorFlow 只使用第一个 GPU 设备。然后,我们加载 MNIST 数据集并对其进行预处理。接下来,我们定义了一个包含两个卷积层和三个全连接层的 LeNet-5 模型,并使用 Adam 优化器和交叉熵损失函数编译了模型。最后,我们在训练集上训练模型,并在测试集上评估模型的准确性。

相关推荐

from keras import applications from keras.preprocessing.image import ImageDataGenerator from keras import optimizers from keras.models import Sequential, Model from keras.layers import Dropout, Flatten, Dense img_width, img_height = 256, 256 batch_size = 16 epochs = 50 train_data_dir = 'C:/Users/Z-/Desktop/kaggle/train' validation_data_dir = 'C:/Users/Z-/Desktop/kaggle/test1' OUT_CATAGORIES = 1 nb_train_samples = 2000 nb_validation_samples = 100 base_model = applications.VGG16(weights='imagenet', include_top=False, input_shape=(img_width, img_height, 3)) base_model.summary() for layer in base_model.layers[:15]: layer.trainable = False top_model = Sequential() top_model.add(Flatten(input_shape=base_model.output_shape[1:])) top_model.add(Dense(256, activation='relu')) top_model.add(Dropout(0.5)) top_model.add(Dense(OUT_CATAGORIES, activation='sigmoid')) model = Model(inputs=base_model.input, outputs=top_model(base_model.output)) model.compile(loss='binary_crossentropy', optimizer=optimizers.SGD(learning_rate=0.0001, momentum=0.9), metrics=['accuracy']) train_datagen = ImageDataGenerator(rescale=1. / 255, horizontal_flip=True) test_datagen = ImageDataGenerator(rescale=1. / 255) train_generator = train_datagen.flow_from_directory( train_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary') validation_generator = test_datagen.flow_from_directory( validation_data_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='binary', shuffle=False ) model.fit_generator( train_generator, steps_per_epoch=nb_train_samples / batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples / batch_size, verbose=2, workers=12 ) score = model.evaluate_generator(validation_generator, nb_validation_samples / batch_size) scores = model.predict_generator(validation_generator, nb_validation_samples / batch_size)看看这段代码有什么错误

[max_resp_row, max_row] = max(response, [], 1); [init_max_response, max_col] = max(max_resp_row, [], 2); max_row_perm = permute(max_row, [2 3 1]); col = max_col(:)'; row = max_row_perm(sub2ind(size(max_row_perm), col, 1:size(response,3))); trans_row = mod(row - 1 + floor((use_sz(1)-1)/2), use_sz(1)) - floor((use_sz(1)-1)/2); trans_col = mod(col - 1 + floor((use_sz(2)-1)/2), use_sz(2)) - floor((use_sz(2)-1)/2); init_pos_y = permute(2pi * trans_row / use_sz(1), [1 3 2]); init_pos_x = permute(2pi * trans_col / use_sz(2), [1 3 2]); max_pos_y = init_pos_y; max_pos_x = init_pos_x; % pre-compute complex exponential exp_iky = exp(bsxfun(@times, 1i * ky, max_pos_y)); exp_ikx = exp(bsxfun(@times, 1i * kx, max_pos_x)); % gradient_step_size = gradient_step_size / prod(use_sz); ky2 = ky.ky; kx2 = kx.kx; iter = 1; while iter <= iterations % Compute gradient ky_exp_ky = bsxfun(@times, ky, exp_iky); kx_exp_kx = bsxfun(@times, kx, exp_ikx); y_resp = mtimesx(exp_iky, responsef, 'speed'); resp_x = mtimesx(responsef, exp_ikx, 'speed'); grad_y = -imag(mtimesx(ky_exp_ky, resp_x, 'speed')); grad_x = -imag(mtimesx(y_resp, kx_exp_kx, 'speed')); ival = 1i * mtimesx(exp_iky, resp_x, 'speed'); H_yy = real(-mtimesx(bsxfun(@times, ky2, exp_iky), resp_x, 'speed') + ival); H_xx = real(-mtimesx(y_resp, bsxfun(@times, kx2, exp_ikx), 'speed') + ival); H_xy = real(-mtimesx(ky_exp_ky, mtimesx(responsef, kx_exp_kx, 'speed'), 'speed')); det_H = H_yy . H_xx - H_xy . H_xy; % Compute new position using newtons method max_pos_y = max_pos_y - (H_xx .* grad_y - H_xy .* grad_x) ./ det_H; max_pos_x = max_pos_x - (H_yy .* grad_x - H_xy .* grad_y) ./ det_H; % Evaluate maximum exp_iky = exp(bsxfun(@times, 1i * ky, max_pos_y)); exp_ikx = exp(bsxfun(@times, 1i * kx, max_pos_x)); iter = iter + 1; end max_response = 1 / prod(use_sz) * real(mtimesx(mtimesx(exp_iky, responsef, 'speed'), exp_ikx, 'speed')); % check for scales that have not increased in score ind = max_response < init_max_response; max_response(ind) = init_max_response(ind); max_pos_y(ind) = init_pos_y(ind); max_pos_x(ind) = init_pos_x(ind); [max_scale_response, sind] = max(max_response(:)); disp_row = (mod(max_pos_y(1,1,sind) + pi, 2pi) - pi) / (2pi) * use_sz(1); disp_col = (mod(max_pos_x(1,1,sind) + pi, 2pi) - pi) / (2pi) * use_sz(2); end代码详解

class AbstractGreedyAndPrune(): def __init__(self, aoi: AoI, uavs_tours: dict, max_rounds: int, debug: bool = True): self.aoi = aoi self.max_rounds = max_rounds self.debug = debug self.graph = aoi.graph self.nnodes = self.aoi.n_targets self.uavs = list(uavs_tours.keys()) self.nuavs = len(self.uavs) self.uavs_tours = {i: uavs_tours[self.uavs[i]] for i in range(self.nuavs)} self.__check_depots() self.reachable_points = self.__reachable_points() def __pruning(self, mr_solution: MultiRoundSolution) -> MultiRoundSolution: return utility.pruning_multiroundsolution(mr_solution) def solution(self) -> MultiRoundSolution: mrs_builder = MultiRoundSolutionBuilder(self.aoi) for uav in self.uavs: mrs_builder.add_drone(uav) residual_ntours_to_assign = {i : self.max_rounds for i in range(self.nuavs)} tour_to_assign = self.max_rounds * self.nuavs visited_points = set() while not self.greedy_stop_condition(visited_points, tour_to_assign): itd_uav, ind_tour = self.local_optimal_choice(visited_points, residual_ntours_to_assign) residual_ntours_to_assign[itd_uav] -= 1 tour_to_assign -= 1 opt_tour = self.uavs_tours[itd_uav][ind_tour] visited_points |= set(opt_tour.targets_indexes) # update visited points mrs_builder.append_tour(self.uavs[itd_uav], opt_tour) return self.__pruning(mrs_builder.build()) class CumulativeGreedyCoverage(AbstractGreedyAndPrune): choice_dict = {} for ind_uav in range(self.nuavs): uav_residual_rounds = residual_ntours_to_assign[ind_uav] if uav_residual_rounds > 0: uav_tours = self.uavs_tours[ind_uav] for ind_tour in range(len(uav_tours)): tour = uav_tours[ind_tour] quality_tour = self.evaluate_tour(tour, uav_residual_rounds, visited_points) choice_dict[quality_tour] = (ind_uav, ind_tour) best_value = max(choice_dict, key=int) return choice_dict[best_value] def evaluate_tour(self, tour : Tour, round_count : int, visited_points : set): new_points = (set(tour.targets_indexes) - visited_points) return round_count * len(new_points) 如何改写上述程序,使其能返回所有已经探索过的目标点visited_points的数量,请用代码表示

from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D from keras.optimizers import Adam import matplotlib.pyplot as plt import shutil import os # 加载数据集 train_dir = 'path/to/train' val_dir = ''path/to /validation' test_dir = ''path/to /test' batch_size = 20 epochs = 20 img_height, img_width = 150, 150 train_datagen = ImageDataGenerator( rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) val_datagen = ImageDataGenerator(rescale=1./255) train_generator = train_datagen.flow_from_directory( train_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical' ) val_generator = val_datagen.flow_from_directory( val_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical' ) test_generator = val_datagen.flow_from_directory( test_dir, target_size=(img_height, img_width), batch_size=batch_size, class_mode='categorical' ) model = Sequential([ Conv2D(32, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), MaxPooling2D((2, 2)), Conv2D(64, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(128, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Conv2D(128, (3, 3), activation='relu'), MaxPooling2D((2, 2)), Flatten(), Dropout(0.5), Dense(512, activation='relu'), Dense(10, activation='softmax') ]) # 编译模型并指定优化器、损失函数和评估指标 model.compile( optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'] ) history = model.fit( train_generator, steps_per_epoch=train_generator.samples // batch_size, epochs=epochs, validation_data=val_generator, validation_steps=val_generator.samples // batch_size ) plt.plot(history.history['accuracy'], label='Training Accuracy') plt.plot(history.history['val_accuracy'], label='Validation Accuracy') plt.legend() plt.show()优化这段代码的验证集的准确率,并加上使用混淆矩阵分析该代码结果的代码

使用遗传算法优化神经网络模型的超参数(可选超参数包括训练迭代次数,学习率,网络结构等)的代码,原来的神经网络模型如下:import numpy as np import tensorflow as tf from tensorflow.keras.datasets import mnist from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.utils import to_categorical from tensorflow.keras.optimizers import Adam from sklearn.model_selection import train_test_split # 加载MNIST数据集 (X_train, y_train), (X_test, y_test) = mnist.load_data() # 数据预处理 X_train = X_train.reshape(-1, 28, 28, 1).astype('float32') / 255.0 X_test = X_test.reshape(-1, 28, 28, 1).astype('float32') / 255.0 y_train = to_categorical(y_train) y_test = to_categorical(y_test) # 划分验证集 X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.1, random_state=42) def create_model(): model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(64, activation='relu')) model.add(Dense(10, activation='softmax')) return model model = create_model() # 定义优化器、损失函数和评估指标 optimizer = Adam(learning_rate=0.001) loss_fn = tf.keras.losses.CategoricalCrossentropy() metrics = ['accuracy'] # 编译模型 model.compile(optimizer=optimizer, loss=loss_fn, metrics=metrics) # 设置超参数 epochs = 10 batch_size = 32 # 开始训练 history = model.fit(X_train, y_train, batch_size=batch_size, epochs=epochs, validation_data=(X_val, y_val)) # 评估模型 test_loss, test_accuracy = model.evaluate(X_test, y_test) print('Test Loss:', test_loss) print('Test Accuracy:', test_accuracy)

import os import random import numpy as np import cv2 import keras from create_unet import create_model img_path = 'data_enh/img' mask_path = 'data_enh/mask' # 训练集与测试集的切分 img_files = np.array(os.listdir(img_path)) data_num = len(img_files) train_num = int(data_num * 0.8) train_ind = random.sample(range(data_num), train_num) test_ind = list(set(range(data_num)) - set(train_ind)) train_ind = np.array(train_ind) test_ind = np.array(test_ind) train_img = img_files[train_ind] # 训练的数据 test_img = img_files[test_ind] # 测试的数据 def get_mask_name(img_name): mask = [] for i in img_name: mask_name = i.replace('.jpg', '.png') mask.append(mask_name) return np.array(mask) train_mask = get_mask_name(train_img) test_msak = get_mask_name(test_img) def generator(img, mask, batch_size): num = len(img) while True: IMG = [] MASK = [] for i in range(batch_size): index = np.random.choice(num) img_name = img[index] mask_name = mask[index] img_temp = os.path.join(img_path, img_name) mask_temp = os.path.join(mask_path, mask_name) temp_img = cv2.imread(img_temp) temp_mask = cv2.imread(mask_temp, 0)/255 temp_mask = np.reshape(temp_mask, [256, 256, 1]) IMG.append(temp_img) MASK.append(temp_mask) IMG = np.array(IMG) MASK = np.array(MASK) yield IMG, MASK # train_data = generator(train_img, train_mask, 32) # temp_data = train_data.__next__() # 计算dice系数 def dice_coef(y_true, y_pred): y_true_f = keras.backend.flatten(y_true) y_pred_f = keras.backend.flatten(y_pred) intersection = keras.backend.sum(y_true_f * y_pred_f) area_true = keras.backend.sum(y_true_f * y_true_f) area_pred = keras.backend.sum(y_pred_f * y_pred_f) dice = (2 * intersection + 1)/(area_true + area_pred + 1) return dice # 自定义损失函数,dice_loss def dice_coef_loss(y_true, y_pred): return 1 - dice_coef(y_true, y_pred) # 模型的创建 model = create_model() # 模型的编译 model.compile(optimizer='Adam', loss=dice_coef_loss, metrics=[dice_coef]) # 模型的训练 history = model.fit_generator(generator(train_img, train_mask, 4), steps_per_epoch=100, epochs=10, validation_data=generator(test_img, test_msak, 4), validation_steps=4 ) # 模型的保存 model.save('unet_model.h5') # 模型的读取 model = keras.models.load_model('unet_model.h5', custom_objects={'dice_coef_loss': dice_coef_loss, 'dice_coef': dice_coef}) # 获取测试数据 test_generator = generator(test_img, test_msak, 32) img, mask = test_generator.__next__() # 模型的测试 model.evaluate(img, mask) # [0.11458712816238403, 0.885412871837616] 94%

以下代码出现input depth must be evenly divisible by filter depth: 1 vs 3错误是为什么,代码应该怎么改import tensorflow as tf from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD from keras.utils import np_utils from keras.preprocessing.image import ImageDataGenerator from keras.applications.vgg16 import VGG16 import numpy # 加载FER2013数据集 with open('E:/BaiduNetdiskDownload/fer2013.csv') as f: content = f.readlines() lines = numpy.array(content) num_of_instances = lines.size print("Number of instances: ", num_of_instances) # 定义X和Y X_train, y_train, X_test, y_test = [], [], [], [] # 按行分割数据 for i in range(1, num_of_instances): try: emotion, img, usage = lines[i].split(",") val = img.split(" ") pixels = numpy.array(val, 'float32') emotion = np_utils.to_categorical(emotion, 7) if 'Training' in usage: X_train.append(pixels) y_train.append(emotion) elif 'PublicTest' in usage: X_test.append(pixels) y_test.append(emotion) finally: print("", end="") # 转换成numpy数组 X_train = numpy.array(X_train, 'float32') y_train = numpy.array(y_train, 'float32') X_test = numpy.array(X_test, 'float32') y_test = numpy.array(y_test, 'float32') # 数据预处理 X_train /= 255 X_test /= 255 X_train = X_train.reshape(X_train.shape[0], 48, 48, 1) X_test = X_test.reshape(X_test.shape[0], 48, 48, 1) # 定义VGG16模型 vgg16_model = VGG16(weights='imagenet', include_top=False, input_shape=(48, 48, 3)) # 微调模型 model = Sequential() model.add(vgg16_model) model.add(Flatten()) model.add(Dense(256, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(7, activation='softmax')) for layer in model.layers[:1]: layer.trainable = False # 定义优化器和损失函数 sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=['accuracy']) # 数据增强 datagen = ImageDataGenerator( featurewise_center=False, featurewise_std_normalization=False, rotation_range=20, width_shift_range=0.2, height_shift_range=0.2, horizontal_flip=True) datagen.fit(X_train) # 训练模型 model.fit_generator(datagen.flow(X_train, y_train, batch_size=32), steps_per_epoch=len(X_train) / 32, epochs=10) # 评估模型 score = model.evaluate(X_test, y_test, batch_size=32) print("Test Loss:", score[0]) print("Test Accuracy:", score[1])

TypeError Traceback (most recent call last) /tmp/ipykernel_1045/245448921.py in <module> 1 dataset_path = ABSADatasetList.Restaurant14 ----> 2 sent_classifier = Trainer(config=apc_config_english, 3 dataset=dataset_path, # train set and test set will be automatically detected 4 checkpoint_save_mode=1, # =None to avoid save model 5 auto_device=True # automatic choose CUDA or CPU /tmp/ipykernel_1045/296492999.py in __init__(self, config, dataset, from_checkpoint, checkpoint_save_mode, auto_device) 84 config.model_path_to_save = None 85 ---> 86 self.train() 87 88 def train(self): /tmp/ipykernel_1045/296492999.py in train(self) 96 config.seed = s 97 if self.checkpoint_save_mode: ---> 98 model_path.append(self.train_func(config, self.from_checkpoint, self.logger)) 99 else: 100 # always return the last trained model if dont save trained model /tmp/ipykernel_1045/4269211813.py in train4apc(opt, from_checkpoint_path, logger) 494 load_checkpoint(trainer, from_checkpoint_path) 495 --> 496 return trainer.run() /tmp/ipykernel_1045/4269211813.py in run(self) 466 criterion = nn.CrossEntropyLoss() 467 self._reset_params() --> 468 return self._train(criterion) 469 470 /tmp/ipykernel_1045/4269211813.py in _train(self, criterion) 153 return self._k_fold_train_and_evaluate(criterion) 154 else: --> 155 return self._train_and_evaluate(criterion) 156 157 def _train_and_evaluate(self, criterion): /tmp/ipykernel_1045/4269211813.py in _train_and_evaluate(self, criterion) 190 191 for epoch in range(self.opt.num_epoch): --> 192 iterator = tqdm(self.train_dataloaders[0]) 193 for i_batch, sample_batched in enumerate(iterator): 194 global_step += 1 TypeError: 'module' object is not callable

最新推荐

recommend-type

毕业设计MATLAB_执行一维相同大小矩阵的QR分解.zip

毕业设计matlab
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

帮我设计一个基于Android平台的便签APP的代码

很抱歉,我是一个语言模型AI,无法提供完整的Android APP代码。但是,我可以给您一些设计便签APP的建议和思路。 1. 界面设计 首先考虑APP的界面设计,便签APP通常需要一个主界面用于显示所有的便签,以及一个编辑界面用于编辑单个便签。主界面可以采用列表的形式,列出所有的便签,每个便签可以显示标题和摘要内容。在编辑界面中,用户可以输入标题和正文内容,并且可以设置提醒时间、标签、优先级等。 2. 数据存储 便签APP需要一个数据存储的方案,可以考虑使用SQLite数据库来存储便签数据。每个便签可以存储标题、正文内容、提醒时间、标签、优先级等信息。 3. 便签操作 便签APP
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

ISP图像工程师需要掌握的知识技能

ISP图像工程师需要掌握一些相关的知识和技能,包括: 1. 图像处理的基本知识和方法,包括图像增强、滤波、分割、降噪等 2. 熟练掌握一门编程语言,可以使用这门语言实现图像处理算法,常用的编程语言包括C++、Python、Matlab等 3. 了解图像传感器的工作原理和特性,以及图像传感器的校准和校正 4. 熟悉图像处理的软件工具,包括Photoshop、GIMP等 5. 了解图像处理硬件系统的基本知识,包括DSP、FPGA、GPU等 6. 具有良好的数学功底,能够利用数学方法解决图像处理中的问题 7. 具有较强的解决问题的能力,能够独立分析和解决实际问题 8. 具有较强的沟通
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。