def _get_thread_target(self, obs, last_move, alpha, beta, depth, score_dict): def _min(): _beta = beta self._last_move_list.append(last_move) if depth == 0: score_atk, score_def = self.evaluate(obs) self._last_move_list.pop() # 对于只搜一层的情况下,必须要教会AI防守活三和冲四。这里的做法是手动提高对方活三和冲四的分数 if score_def < score_3_live: if score_atk > score_def: score = score_atk - self._atk_def_ratio * score_def else: score = -score_def + self._atk_def_ratio * score_atk else: if score_def == score_3_live: if score_atk >= score_4: score = score_atk - self._atk_def_ratio * score_def else: score = -score_4 else: # 为了防止AI在对方有活四的情况下放弃治疗 if score_def >= score_4_live: score = score_5 if score_atk == score_5 else -score_5 else: score = score_5 if score_atk == score_5 else -score_4_live x, y = int(last_move[0]), int(last_move[1]) score_dict[(x, y)] = score if self._show_info: print((x, y), 'atk=', score_atk, 'def=', score_def, 'total=', score) return score

时间: 2023-06-18 10:04:23 浏览: 44
这段代码是一个博弈树搜索算法中的极小化函数,用于计算对手最优决策下的最小分数。该函数接受多个参数,包括当前的观察状态 obs、对手上一步的落子位置 last_move、当前搜索的 alpha 和 beta 值、搜索的深度 depth、以及一个分数字典 score_dict,用于记录每个位置的分数。 在函数内部,首先将对手上一步的落子位置加入到 self._last_move_list 列表中,然后根据当前搜索深度和棋盘状态 obs 计算出当前状态下的分数 score_atk 和 score_def,分别代表己方和对方的得分。接着对于不同的得分情况,手动调整对方的分数,以便能够让 AI 学会防守活三和冲四等棋局中的特殊情况。最后将当前位置的分数记录到 score_dict 中,并返回当前状态下对手的最小分数。
相关问题

# if an obs is in max layer, then the agent is supposed to select the action with max score # alpha represents the lower bound of the value of this node def _max(self, obs, last_move, alpha, beta, depth): self._last_move_list.append(last_move) if depth == 0: score_atk, score_def = self.evaluate(obs) self._last_move_list.pop() score = score_atk if score_atk > score_def else -score_def return score pos_list = self.generate(obs) for i, j in pos_list: obs[i][j] = self.color value = self._min(obs, (i, j), alpha, beta, depth - 1) if value > alpha: alpha = value obs[i][j] = 0 if alpha > beta: break self._last_move_list.pop() return alpha

这段代码是一个博弈树的最大值搜索函数,用于在博弈树中搜索最优解。在搜索过程中,函数会在当前观察到的状态中找到所有可行的动作,然后对每个动作进行模拟,并递归地调用_min函数来搜索下一层。如果找到了更优的解,就更新alpha的值。如果alpha的值大于beta,就退出搜索,返回最优解。如果已经达到搜索的最大深度,就调用评估函数来计算当前状态的分数,并返回该分数。 这段代码的逻辑是比较清晰的,可以通过递归的方式来搜索整个博弈树,找到最优解。同时,使用alpha-beta剪枝算法可以大大减少搜索的时间,提高搜索效率。

def _min(self, obs, last_move, alpha, beta, depth): self._last_move_list.append(last_move) if depth == 0: score_atk, score_def = self.evaluate(obs) self._last_move_list.pop() score = score_atk if score_atk > score_def else -score_def return score pos_list = self.generate(obs) for i, j in pos_list: obs[i][j] = -self.color value = self._max(obs, (i, j), alpha, beta, depth - 1) # print((i, j), value) if value < beta: beta = value obs[i][j] = 0 if alpha > beta: break # this indicates that the parent node (belongs to max layer) will select a node with value # no less than alpha, however, the value of child selected in this node (belongs to min layer) # will no more than beta <= alpha, so there is no need to search this node self._last_move_list.pop() return beta

这是一个博弈树搜索算法中的极小化搜索函数,用于处理在博弈树搜索过程中的“最小化”层次。在这个函数中,输入参数 obs 表示当前的观察状态,last_move 表示上一步的落子位置,alpha 和 beta 分别表示当前的最优下限和上限,depth 表示当前的搜索深度。该函数会首先对当前状态进行评估,如果已经达到了最大搜索深度或者游戏已经结束,就会返回当前状态的得分。否则,它会生成下一步可能的落子位置,并遍历每一种可能的落子方案,递归调用极大化搜索函数 _max,获取对应的得分,并根据 alpha 和 beta 剪枝。具体地,如果当前得分小于 beta,就更新 beta 为当前得分;如果 alpha 大于等于 beta,就可以直接退出循环,因为当前搜索的子树已经无法对极大值产生影响。最后,该函数返回 beta 作为当前状态的得分。

相关推荐

最新推荐

recommend-type

轻松OBS录屏黑屏解决办法(原创文章请勿转载)NVENC Error:init_encoder:报错信息

解决安装OBS后录屏黑屏问题,简单的几个设置就能轻松解决。报错信息:NVENC Error:init_encoder:(NV_ENC_ERR_INVALID_VERSION)
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

python中从Excel中取的列没有了0

可能是因为Excel中的列被格式化为数字,而数字前导的0被省略了。可以在Excel中将列的格式更改为文本,这样就会保留数字前导的0。另外,在Python中读取Excel时,可以将列的数据类型指定为字符串,这样就可以保留数字前导的0。例如: ```python import pandas as pd # 读取Excel文件 df = pd.read_excel('data.xlsx', dtype={'列名': str}) # 输出列数据 print(df['列名']) ``` 其中,`dtype={'列名': str}`表示将列名为“列名”的列的数据类型指定为字符串。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。