def fit(self, obs): self.obs = obs self.n_features = self.obs.shape[1] startprob = np.random.uniform(self.lb, self.ub, size=self.n_states) startprob /= np.sum(startprob) self.model = GaussianHMM(n_components=self.n_states, startprob_prior=startprob,covariance_type='spherical', n_iter=1000) self.model.fit(obs) self.sparrows = [self.generate_random_params() for _ in range(self.n_sparrows)] self.sparrows /= np.sum(self.sparrows) self.scores = [self.calculate_score(p) for p in self.sparrows] for i in range(self.n_iter): for j in range(self.n_sparrows): # 移动 params = self.sparrows[j] params += np.random.uniform(self.lb, self.ub, size=params.shape) params = np.clip(params, self.lb, self.ub) # 变异 params = self.mutate(params) # 计算分数 score = self.calculate_score(params) score = int(score) # 更新最优解 if score > self.best_score: self.best_score = score self.best_params = params # 更新麻雀群体 if score > self.scores[j]: self.sparrows[j] = params self.scores[j] = score
时间: 2024-02-10 18:21:25 浏览: 134
这段代码中出现了一些术语,可以帮我理解一下吗?
- GaussianHMM:高斯隐马尔可夫模型,是一种用于处理时间序列数据的统计模型,通常用于识别和预测序列中的模式和趋势。
- n_components:表示隐状态的数量,即模型中的状态数。
- startprob_prior:表示每个隐状态的先验概率。
- covariance_type:表示协方差矩阵的类型,可以是对角矩阵、球状协方差矩阵或完整协方差矩阵。
- n_iter:表示训练模型时迭代的次数。
- sparrows:表示麻雀群体,是一种基于鸟群行为的优化算法。
- mutate:表示变异操作,是优化算法中的一种操作,包括对参数进行随机扰动或基于其他参数进行变换,以便生成新的解。
- best_score:表示最优解的得分,即当前已发现的最好的参数组合的分数。
- best_params:表示最优解的参数组合,即当前已发现的最好的参数组合。
- lb和ub:表示参数的下限和上限,用于约束参数的取值范围。
相关问题
def step(self, action): # 在环境中执行一个动作 assert self.action_space.contains(action) prev_val = self._get_val() self.current_step += 1 if self.current_step == len(self.data): self.done = True if self.done: reward = self.profit - self.total_reward return self._next_observation(), reward, self.done, {} self._take_action(action) reward = self._get_reward() self.total_reward += reward obs = self._next_observation() return obs, reward, self.done, {}
这段代码是 `StockTradingEnv` 类中的 `step` 方法,用于在环境中执行一个动作,并返回执行该动作后获得的奖励、新的观察值以及是否结束交易等信息。具体来说,这个方法会执行如下步骤:
1. 首先检查动作是否在动作空间中,如果不在则会报错;
2. 调用 `_get_val` 方法获取当前股票的价值(假设在当前时间步进行交易后,股票的价值不变);
3. 将当前时间步加 1,如果当前时间步已经达到数据长度,则将结束标志设为 True;
4. 如果结束标志为 True,那么计算得到最终的奖励(即当前收益减去之前的总奖励),并返回最终的观察值、奖励、结束标志和一个空字典;
5. 否则,执行动作并调用 `_get_reward` 方法获取奖励,累加到之前的总奖励中,调用 `_next_observation` 方法获取新的观察值,并返回新的观察值、奖励、结束标志和一个空字典。
总之,这个 `step` 方法可以让我们在股票交易环境中执行一个动作,并获得执行该动作后的奖励以及新的观察值,从而逐步训练出一个股票交易智能体。
class Net(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(16, 128) self.fc2 = nn.Linear(128, 256) self.fc3 = nn.Linear(256, 128) self.fc4 = nn.Linear(128, 3) def forward(self, obs, state=None, info={}): if not isinstance(obs, torch.Tensor): obs = torch.tensor(obs, dtype=torch.float) x = F.relu(self.fc1(obs)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = self.fc4(x) return x, state state_shape = 16 action_shape = 1 net = Net() optim = torch.optim.Adam(net.parameters(), lr=1e-3)(这段代码定义了什么)
这段代码定义了一个神经网络模型`Net`,它有4个全连接层,其中第1层输入大小为16,输出大小为128;第2层输入大小为128,输出大小为256;第3层输入大小为256,输出大小为128;第4层输入大小为128,输出大小为3。这个模型的`forward`函数定义了网络的前向传播过程,输入`obs`是网络的输入,`state`和`info`是可选参数,输出是网络的输出和`state`。
同时,代码还定义了一个优化器`optim`,使用Adam算法进行参数优化,学习率为1e-3。最后,定义了两个变量`state_shape`和`action_shape`,分别代表状态和动作的形状。
阅读全文