def learn(self, obs, action, reward, next_obs, terminal): terminal = np.expand_dims(terminal, -1) reward = np.expand_dims(reward, -1) obs = torch.FloatTensor(obs).to(self.device) action = torch.FloatTensor(action).to(self.device) reward = torch.FloatTensor(reward).to(self.device) next_obs = torch.FloatTensor(next_obs).to(self.device) terminal = torch.FloatTensor(terminal).to(self.device) critic_loss,actor_loss = self.alg.learn(obs, action, reward, next_obs, terminal) return critic_loss,actor_loss
时间: 2023-06-23 10:09:53 浏览: 140
这段代码看起来是一个强化学习算法的学习过程。输入的参数包括当前状态(obs)、动作(action)、奖励(reward)、下一个状态(next_obs)和是否结束(terminal)。其中,obs、action、reward、next_obs都转换成了PyTorch中的张量格式,并且都被送到了GPU上进行计算。最后,算法进行一次学习过程,输出actor_loss和critic_loss两个指标来表示学习效果。
相关问题
def _get_thread_target(self, obs, last_move, alpha, beta, depth, score_dict): def _min(): _beta = beta self._last_move_list.append(last_move) if depth == 0: score_atk, score_def = self.evaluate(obs) self._last_move_list.pop() # 对于只搜一层的情况下,必须要教会AI防守活三和冲四。这里的做法是手动提高对方活三和冲四的分数 if score_def < score_3_live: if score_atk > score_def: score = score_atk - self._atk_def_ratio * score_def else: score = -score_def + self._atk_def_ratio * score_atk else: if score_def == score_3_live: if score_atk >= score_4: score = score_atk - self._atk_def_ratio * score_def else: score = -score_4 else: # 为了防止AI在对方有活四的情况下放弃治疗 if score_def >= score_4_live: score = score_5 if score_atk == score_5 else -score_5 else: score = score_5 if score_atk == score_5 else -score_4_live x, y = int(last_move[0]), int(last_move[1]) score_dict[(x, y)] = score if self._show_info: print((x, y), 'atk=', score_atk, 'def=', score_def, 'total=', score) return score
这段代码是一个博弈树搜索算法中的极小化函数,用于计算对手最优决策下的最小分数。该函数接受多个参数,包括当前的观察状态 obs、对手上一步的落子位置 last_move、当前搜索的 alpha 和 beta 值、搜索的深度 depth、以及一个分数字典 score_dict,用于记录每个位置的分数。
在函数内部,首先将对手上一步的落子位置加入到 self._last_move_list 列表中,然后根据当前搜索深度和棋盘状态 obs 计算出当前状态下的分数 score_atk 和 score_def,分别代表己方和对方的得分。接着对于不同的得分情况,手动调整对方的分数,以便能够让 AI 学会防守活三和冲四等棋局中的特殊情况。最后将当前位置的分数记录到 score_dict 中,并返回当前状态下对手的最小分数。
def step(self, action): # 在环境中执行一个动作 assert self.action_space.contains(action) prev_val = self._get_val() self.current_step += 1 if self.current_step == len(self.data): self.done = True if self.done: reward = self.profit - self.total_reward return self._next_observation(), reward, self.done, {} self._take_action(action) reward = self._get_reward() self.total_reward += reward obs = self._next_observation() return obs, reward, self.done, {}
这段代码是 `StockTradingEnv` 类中的 `step` 方法,用于在环境中执行一个动作,并返回执行该动作后获得的奖励、新的观察值以及是否结束交易等信息。具体来说,这个方法会执行如下步骤:
1. 首先检查动作是否在动作空间中,如果不在则会报错;
2. 调用 `_get_val` 方法获取当前股票的价值(假设在当前时间步进行交易后,股票的价值不变);
3. 将当前时间步加 1,如果当前时间步已经达到数据长度,则将结束标志设为 True;
4. 如果结束标志为 True,那么计算得到最终的奖励(即当前收益减去之前的总奖励),并返回最终的观察值、奖励、结束标志和一个空字典;
5. 否则,执行动作并调用 `_get_reward` 方法获取奖励,累加到之前的总奖励中,调用 `_next_observation` 方法获取新的观察值,并返回新的观察值、奖励、结束标志和一个空字典。
总之,这个 `step` 方法可以让我们在股票交易环境中执行一个动作,并获得执行该动作后的奖励以及新的观察值,从而逐步训练出一个股票交易智能体。
阅读全文
相关推荐
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)