def learn(self, obs, action, reward, next_obs, terminal): terminal = np.expand_dims(terminal, -1) reward = np.expand_dims(reward, -1) obs = torch.FloatTensor(obs).to(self.device) action = torch.FloatTensor(action).to(self.device) reward = torch.FloatTensor(reward).to(self.device) next_obs = torch.FloatTensor(next_obs).to(self.device) terminal = torch.FloatTensor(terminal).to(self.device) critic_loss,actor_loss = self.alg.learn(obs, action, reward, next_obs, terminal) return critic_loss,actor_loss
时间: 2023-06-23 21:09:53 浏览: 136
Obs_lmi_letraD_matlab
这段代码看起来是一个强化学习算法的学习过程。输入的参数包括当前状态(obs)、动作(action)、奖励(reward)、下一个状态(next_obs)和是否结束(terminal)。其中,obs、action、reward、next_obs都转换成了PyTorch中的张量格式,并且都被送到了GPU上进行计算。最后,算法进行一次学习过程,输出actor_loss和critic_loss两个指标来表示学习效果。
阅读全文