请解释以下代码:# 根据输入观察值,采样输出的动作值,有一定概率采取随机动作(探索) def sample(self, obs): if np.random.uniform(0, 1) < (1.0 - self.epsilon): #根据table的Q值选动作 action = self.predict(obs) else: action = np.random.choice(self.act_n) #有一定概率随机探索选取一个动作 return action
时间: 2024-04-19 14:24:23 浏览: 91
samples:样例代码
这段代码是一个采样函数,用于根据输入的观察值进行动作选择。它使用了epsilon-greedy策略,在一定概率下采取随机动作以进行探索。
首先,代码通过生成一个0到1之间的随机数,判断是否小于1.0减去epsilon的值。如果小于该值,则以1-epsilon的概率选择预测的动作,即调用self.predict(obs)来获取动作。
如果生成的随机数大于等于1.0减去epsilon的值,则以epsilon的概率进行随机探索,通过np.random.choice(self.act_n)来从动作空间中随机选择一个动作。
最后,返回选取的动作值。这样,根据epsilon-greedy策略,在一定概率下会采取随机动作以进行探索,而在其他情况下会根据预测值选择动作。
阅读全文