def forward(self, input): # input has shape [batch_size, num_features, time] # discriminator requires shape [batchSize, 1, num_features, time] input = input.unsqueeze(1) # print("Discriminator forward input: ", input.shape) conv_layer_1 = self.convLayer1(input) # print("Discriminator forward conv_layer_1: ", conv_layer_1.shape) downsample1 = self.downSample1(conv_layer_1) # print("Discriminator forward downsample1: ", downsample1.shape) downsample2 = self.downSample2(downsample1) # print("Discriminator forward downsample2: ", downsample2.shape) downsample3 = self.downSample3(downsample2) # print("Discriminator forward downsample3: ", downsample3.shape) # downsample3 = downsample3.contiguous().permute(0, 2, 3, 1).contiguous() # print("Discriminator forward downsample3: ", downsample3.shape) output = torch.sigmoid(self.outputConvLayer(downsample3)) # print("Discriminator forward output: ", output.shape) return output
时间: 2023-06-23 08:08:14 浏览: 61
DeepLearning之LSTM模型输入参数:time_step, input_size, batch_size的理解
5星 · 资源好评率100%
这段代码是一个神经网络模型的前向传播函数实现,该模型是一个鉴别器(discriminator),用于判断输入的数据是否真实(real)或假的(fake)。输入数据的形状是 [batch_size, num_features, time],其中 batch_size 表示输入的数据有多少个样本,num_features 表示每个样本的特征维度,time 表示输入数据的时间步数。为了符合鉴别器的输入要求,需要将输入数据的形状变为 [batchSize, 1, num_features, time],这可以通过 unsqueeze 函数实现。接下来,通过卷积层和下采样层对数据进行特征提取和降维处理,最后通过输出层得到判断结果。这里使用了 sigmoid 函数将输出值压缩到 [0,1] 范围内,表示输出结果为真实样本的概率。
阅读全文