x_cpu,_=data

时间: 2024-04-20 15:22:17 浏览: 20
这段代码看起来是将数据中的输入部分赋值给变量 `x_cpu`,而丢弃了其他部分。在这段代码中,`data` 是一个包含多个元素的变量,可能是一个数据集或者一个批次的样本。通过 `_` 来丢弃其他部分的数据,只保留输入部分的数据赋值给 `x_cpu` 变量。 需要注意的是,这段代码可能只是示例代码的一部分,缺少了一些上下文信息,无法完全确定其用途和含义。
相关问题

def test(): with torch.no_grad(): for data in valid_loader: val_label, val_input = data val_input = val_input.to(torch.float32) val_input, val_label = val_input.to(device), val_label.to(device) val_pred = model.forward(x=val_input) _, predicted = torch.max(val_pred, dim=1) # 找到出现次数最多的元素的索引 most_common_index = torch.argmax(torch.bincount(val_pred)) # 获取出现次数最多的值 most_common_value = val_pred[most_common_index] return most_common_value.item() #return predicted if __name__ == '__main__': #startTime = time.time() model.load_state_dict(torch.load('model.pth')) recognize = test() #endTime = time.time() #print("GPU耗时: ", endTime - startTime) print(recognize) 出现“"bincount_cpu" not implemented for 'Float'” 怎么修改

`"bincount_cpu" not implemented for 'Float'`错误是因为`torch.bincount()`函数只能用于整数类型的张量,而不能用于浮点数类型的张量。在你的代码中,`val_pred`是一个浮点数类型的张量。 要解决这个问题,你可以将`val_pred`张量转换为整数类型。你可以使用`torch.argmax()`函数找到`val_pred`中出现次数最多的元素的索引,然后使用该索引从`val_pred`中获取对应的值。下面是修改后的代码: ```python import torch def test(): with torch.no_grad(): for data in valid_loader: val_label, val_input = data val_input = val_input.to(torch.float32) val_input, val_label = val_input.to(device), val_label.to(device) val_pred = model.forward(x=val_input) _, predicted = torch.max(val_pred, dim=1) # 找到出现次数最多的元素的索引 most_common_index = torch.argmax(torch.bincount(predicted.int())) # 获取出现次数最多的值 most_common_value = predicted[most_common_index] return most_common_value.item() if __name__ == '__main__': model.load_state_dict(torch.load('model.pth')) recognize = test() print(recognize) ``` 在修改后的代码中,我们将`predicted`张量转换为整数类型(`predicted.int()`),然后使用它来计算出现次数最多的元素。这样,你就可以避免`"bincount_cpu" not implemented for 'Float'`错误,并成功获取出现次数最多的值。 请注意,如果`predicted`张量包含浮点数,你可能需要在使用`torch.argmax()`之前将其转换为整数类型。

怎么加快这段代码的运行速度num_samples = x_data.shape[0] features = tf.Variable(initial_value=tf.zeros((1, 0)), dtype=tf.float32) batch_size = 32 for i in range(0, num_samples, batch_size): batch = x_data[i:i + batch_size] batch = tf.expand_dims(batch, axis=0) if i + batch_size > num_samples: batch_num = num_samples - i if batch_num == 1: feature_batch = model.predict(batch.reshape(1, *input_shape), batch_size=batch_num) else: feature_batch = model.predict(batch, batch_size=batch_num) features = tf.concat([features, feature_batch], axis=1) else: feature_batch = model.predict(batch, batch_size=batch_size) features = tf.concat([features, feature_batch], axis=1) print(features.shape)

这段代码的运行速度可以通过以下几种方式进行优化: 1. 使用更快的模型:如果模型的计算速度较慢,可以尝试使用更快的模型,例如MobileNet、EfficientNet等。 2. 使用GPU加速:如果你的电脑有GPU,可以使用GPU加速模型的计算。可以使用`tf.config.experimental.set_memory_growth()`方法来设置GPU内存分配策略,以避免内存溢出问题。 3. 使用TensorFlow Dataset:TensorFlow Dataset是一种高效的数据输入管道,可以帮助提高训练速度。可以使用`tf.data.Dataset.from_tensor_slices()`方法来创建一个Dataset对象,然后使用`batch()`方法和`prefetch()`方法来设置批量大小和预取数据。 4. 使用更大的批量大小:如果你的电脑有足够的内存,可以尝试使用更大的批量大小,以提高训练速度。但是需要注意,批量大小过大可能会导致内存溢出问题。 5. 使用多线程预处理数据:如果你的电脑有多个CPU核心,可以使用多线程预处理数据,以加快数据处理速度。可以使用`tf.data.Dataset.map()`方法来定义一个数据预处理函数,并使用`num_parallel_calls`参数来设置线程数。 根据你的代码,可以使用方法1、2和4来进行优化,具体代码如下: ```python # 方法1:使用更快的模型 from tensorflow.keras.applications import MobileNetV2 model = MobileNetV2(input_shape=input_shape, include_top=False, weights='imagenet') # 方法2:使用GPU加速 gpus = tf.config.list_physical_devices('GPU') if gpus: try: tf.config.experimental.set_memory_growth(gpus[0], True) except RuntimeError as e: print(e) # 方法4:使用更大的批量大小 batch_size = 64 # 修改后的代码 features = tf.Variable(initial_value=tf.zeros((1, 0)), dtype=tf.float32) for i in range(0, num_samples, batch_size): batch = x_data[i:i + batch_size] batch = tf.expand_dims(batch, axis=0) if i + batch_size > num_samples: batch_num = num_samples - i if batch_num == 1: feature_batch = model.predict(batch.reshape(1, *input_shape), batch_size=batch_num) else: feature_batch = model.predict(batch, batch_size=batch_num) features = tf.concat([features, feature_batch], axis=1) else: feature_batch = model.predict(batch, batch_size=batch_size) features = tf.concat([features, feature_batch], axis=1) print(features.shape) ``` 希望这些方法能够帮助你加快代码的运行速度!

相关推荐

# 考虑增加某个计数,会不会提高socre import numpy as np from sklearn.linear_model import LinearRegression # from sklearn.metrics import mean_squared_error file_soft = "/home/maillee/chip_temp_predict/data_handle/ftc_to_select_event/soft_event_ftc.xlsx" file_hard = "/home/maillee/chip_temp_predict/data_handle/ftc_to_select_event/hard_event_ftc.xlsx" file_hard_cache = "/home/maillee/chip_temp_predict/data_handle/ftc_to_select_event/hard_cahce_event_ftc.xlsx" pd_data_soft = pd.read_excel(file_soft,index_col=0) pd_data_hard = pd.read_excel(file_hard,index_col=0) pd_data_hard_cache = pd.read_excel(file_hard_cache,index_col=0) pd_y = pd_data_hard_cache['cores-power'] not_selected_event = ['branch-misses','bus-cycles','cache-misses','instructions', 'ref-cycles','L1-dcache-load-misses', 'L1-dcache-stores','L1-icache-load-misses', 'LLC-load-misses','LLC-store-misses','LLC-stores', 'branch-load-misses','dTLB-load-misses','dTLB-loads', 'dTLB-store-misses','dTLB-stores','iTLB-load-misses', 'iTLB-loads','node-load-misses','node-loads','node-store-misses', 'node-stores','alignment-faults','bpf-output','cgroup-switches', 'cpu-migrations','dummy','emulation-faults','major-faults','minor-faults', 'page-faults','task-clock',] count =0 pd_x = pd.concat([pd_data_hard,pd_data_hard_cache,pd_data_soft],axis=1,join='outer') for i in not_selected_event: count = count+1 pd_x =pd.concat(pd_x[i],pd_x[['cpu-clock','context-switches', 'branch-instructions','cpu-cycles','cache-references', 'L1-dcache-loads','LLC-loads','branch-loads']],axis=1,join='outer') model = LinearRegression().fit(pd_x, pd_y) # print(model.score(pd_x,pd_y)) #R2 score y_pred = model.predict(pd_x) # plt.plot(y_pred) # plt.plot(pd_y) mse = mean_squared_error(pd_y, y_pred) print(count,i,model.score(pd_x,pd_y), mse,'\n') woatis wring

LDAM损失函数pytorch代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s if weight is not None: weight = torch.FloatTensor(weight).cuda() self.weight = weight self.cls_num_list = cls_num_list def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(1,0)) # 0,1 batch_m = batch_m.view((16, 1)) # size=(batch_size, 1) (-1,1) x_m = x - batch_m output = torch.where(index, x_m, x) if self.weight is not None: output = output * self.weight[None, :] target = torch.flatten(target) # 将 target 转换成 1D Tensor logit = output * self.s return F.cross_entropy(logit, target, weight=self.weight) 模型部分参数如下:# 设置全局参数 model_lr = 1e-5 BATCH_SIZE = 16 EPOCHS = 50 DEVICE = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') use_amp = True use_dp = True classes = 7 resume = None CLIP_GRAD = 5.0 Best_ACC = 0 #记录最高得分 use_ema=True model_ema_decay=0.9998 start_epoch=1 seed=1 seed_everything(seed) # 数据增强 mixup mixup_fn = Mixup( mixup_alpha=0.8, cutmix_alpha=1.0, cutmix_minmax=None, prob=0.1, switch_prob=0.5, mode='batch', label_smoothing=0.1, num_classes=classes) # 读取数据集 dataset_train = datasets.ImageFolder('/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/train', transform=transform) dataset_test = datasets.ImageFolder("/home/adminis/hpy/ConvNextV2_Demo/RAF-DB/RAF/valid", transform=transform_test)# 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True,drop_last=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=False) 帮我用pytorch实现模型在模型训练中使用LDAM损失函数

def build_sequences(text, window_size): #text:list of capacity x, y = [],[] for i in range(len(text) - window_size): sequence = text[i:i+window_size] target = text[i+1:i+1+window_size] x.append(sequence) y.append(target) return np.array(x), np.array(y) # 留一评估:一组数据为测试集,其他所有数据全部拿来训练 def get_train_test(data_dict, name, window_size=8): data_sequence=data_dict[name][1] train_data, test_data = data_sequence[:window_size+1], data_sequence[window_size+1:] train_x, train_y = build_sequences(text=train_data, window_size=window_size) for k, v in data_dict.items(): if k != name: data_x, data_y = build_sequences(text=v[1], window_size=window_size) train_x, train_y = np.r_[train_x, data_x], np.r_[train_y, data_y] return train_x, train_y, list(train_data), list(test_data) def relative_error(y_test, y_predict, threshold): true_re, pred_re = len(y_test), 0 for i in range(len(y_test)-1): if y_test[i] <= threshold >= y_test[i+1]: true_re = i - 1 break for i in range(len(y_predict)-1): if y_predict[i] <= threshold: pred_re = i - 1 break return abs(true_re - pred_re)/true_re def evaluation(y_test, y_predict): mae = mean_absolute_error(y_test, y_predict) mse = mean_squared_error(y_test, y_predict) rmse = sqrt(mean_squared_error(y_test, y_predict)) return mae, rmse def setup_seed(seed): np.random.seed(seed) # Numpy module. random.seed(seed) # Python random module. os.environ['PYTHONHASHSEED'] = str(seed) # 为了禁止hash随机化,使得实验可复现。 torch.manual_seed(seed) # 为CPU设置随机种子 if torch.cuda.is_available(): torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子 torch.cuda.manual_seed_all(seed) # if you are using multi-GPU,为所有GPU设置随机种子 torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True

import torch import torch.nn as nn from torchtext.datasets import AG_NEWS from torchtext.data.utils import get_tokenizer from torchtext.vocab import build_vocab_from_iterator # 数据预处理 tokenizer = get_tokenizer('basic_english') train_iter = AG_NEWS(split='train') counter = Counter() for (label, line) in train_iter: counter.update(tokenizer(line)) vocab = build_vocab_from_iterator([counter], specials=["<unk>"]) word2idx = dict(vocab.stoi) # 设定超参数 embedding_dim = 64 hidden_dim = 128 num_epochs = 10 batch_size = 64 # 定义模型 class RNN(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim): super(RNN, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.rnn = nn.RNN(embedding_dim, hidden_dim, batch_first=True) self.fc = nn.Linear(hidden_dim, 4) def forward(self, x): x = self.embedding(x) out, _ = self.rnn(x) out = self.fc(out[:, -1, :]) return out # 初始化模型、优化器和损失函数 model = RNN(len(vocab), embedding_dim, hidden_dim) optimizer = torch.optim.Adam(model.parameters()) criterion = nn.CrossEntropyLoss() # 定义数据加载器 train_iter = AG_NEWS(split='train') train_data = [] for (label, line) in train_iter: label = torch.tensor([int(label)-1]) line = torch.tensor([word2idx[word] for word in tokenizer(line)]) train_data.append((line, label)) train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=True) # 开始训练 for epoch in range(num_epochs): total_loss = 0.0 for input, target in train_loader: model.zero_grad() output = model(input) loss = criterion(output, target.squeeze()) loss.backward() optimizer.step() total_loss += loss.item() * input.size(0) print("Epoch: {}, Loss: {:.4f}".format(epoch+1, total_loss/len(train_data)))改错

最新推荐

recommend-type

SecondactivityMainActivity.java

SecondactivityMainActivity.java
recommend-type

mmexport1719207093976.jpg

mmexport1719207093976.jpg
recommend-type

BSC绩效考核指标汇总 (2).docx

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】Flask中的会话与用户管理

![python网络编程合集](https://media.geeksforgeeks.org/wp-content/uploads/20201021201514/pythonrequests.PNG) # 2.1 用户注册和登录 ### 2.1.1 用户注册表单的设计和验证 用户注册表单是用户创建帐户的第一步,因此至关重要。它应该简单易用,同时收集必要的用户信息。 * **字段设计:**表单应包含必要的字段,如用户名、电子邮件和密码。 * **验证:**表单应验证字段的格式和有效性,例如电子邮件地址的格式和密码的强度。 * **错误处理:**表单应优雅地处理验证错误,并提供清晰的错误消
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

BSC资料.pdf

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【进阶】Flask中的请求处理

![【进阶】Flask中的请求处理](https://img-blog.csdnimg.cn/20200422085130952.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3pqMTEzMTE5MDQyNQ==,size_16,color_FFFFFF,t_70) # 1. Flask请求处理概述** Flask是一个轻量级的Web框架,它提供了一个简洁且灵活的接口来处理HTTP请求。在Flask中,请求处理是一个核心概念,它允许
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到