output.loss.backward()
时间: 2024-05-18 14:16:30 浏览: 193
浅谈Pytorch torch.optim优化器个性化的使用
在PyTorch中,`output.loss.backward()`是用于计算神经网络的梯度并进行反向传播的操作。梯度是指损失函数对网络参数的导数,通过计算梯度可以确定如何更新网络参数以最小化损失函数。所以`output.loss.backward()`的作用是根据损失函数对网络输出的值进行反向传播,并计算出每个参数的梯度。这样,我们就可以根据这些梯度来更新网络的参数,使得网络的输出更加接近目标值。这个操作通常在训练神经网络的过程中使用。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [Loss.backward()](https://blog.csdn.net/shaopeng568/article/details/125716824)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
- *3* [智能计算系统实验2.pdf](https://download.csdn.net/download/qq_43934844/87505623)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文