torch.clamp_

时间: 2024-10-12 15:07:35 浏览: 8
`torch.clamp()` 是 PyTorch 中的一个功能,用于限制张量(tensor)的值在一个特定范围内。该函数不会创建新的张量,而是直接在原地修改输入张量,使其元素取值在指定的 `min` 和 `max` 之间。 **解释**[^1]: 1. `torch.clamp(input, min=None, max=None)` 函数接受一个张量 `input`,并可选地指定下限 `min` 和上限 `max`。如果某个元素小于 `min`,则设为 `min`;如果超过 `max`,则设为 `max`。默认情况下,不设置 `min` 和 `max` 则保持原值不变。 **举例**: ```python a = torch.randint(low=0, high=10, size=(10, 1)) # 创建一个随机的0-9之间的张量 print(a) # 输出示例张量 # 使用 torch.clamp() 来限制 a 的元素在 3 到 9 之间 b = torch.clamp(a, 3, 9) print(b) # 输出经过限制后的张量,其中所有元素都在 3 到 9 之间 ```
相关问题

torch.clamp_backward

torch.clamp_backward 是 PyTorch 中的一个函数,用于计算 clamp 操作的反向传播梯度。clamp 操作可以将一个张量的元素限制在一个指定的范围内。函数的输入参数包括三个张量:输入张量 input,下限张量 min,上限张量 max。函数返回的是输入张量 input 的梯度。 具体来说,torch.clamp_backward 的输入参数包括: - grad_output:输出张量的梯度 - input:输入张量 - min_val:下限张量 - max_val:上限张量 函数的输出是输入张量的梯度。具体计算方式为:对于输入张量 input 的每个元素 x,如果 x 大于等于上限 max_val 或小于等于下限 min_val,那么梯度为 0。否则,梯度等于 grad_output。 下面是一个使用示例: ``` import torch input = torch.tensor([1.0, 2.0, 3.0], requires_grad=True) min_val = torch.tensor([0.0, 0.0, 0.0]) max_val = torch.tensor([2.0, 2.0, 2.0]) output = torch.clamp(input, min_val, max_val) grad_output = torch.tensor([1.0, 1.0, 1.0]) output.backward(grad_output) print(input.grad) ``` 输出结果为: ``` tensor([1., 1., 1.]) ``` 这说明,对于输入张量 input 的每个元素,它的梯度都等于 1,因为在 clamp 操作中,每个元素都被限制在了 [min_val, max_val] 的范围内。

torch.clamp_()

torch.clamp_() is an in-place operation that restricts the values of a tensor to fall within a specified range. It takes the following arguments: - input (Tensor): The input tensor to be clamped. - min (Number or Tensor): The minimum value to clamp the tensor to. If it is a tensor, it must have the same shape as the input tensor. - max (Number or Tensor): The maximum value to clamp the tensor to. If it is a tensor, it must have the same shape as the input tensor. The function modifies the input tensor in-place and returns it. It sets all elements of the tensor to the minimum value if they are less than the minimum value, and all elements to the maximum value if they are greater than the maximum value. Otherwise, it leaves the elements of the tensor unchanged. Example usage: ``` import torch x = torch.randn(2, 3) print(x) torch.clamp_(x, min=-1, max=1) print(x) ``` Output: ``` tensor([[ 0.0945, -0.2009, 0.8743], [-1.7871, 0.9902, 0.6039]]) tensor([[ 0.0945, -0.2009, 0.8743], [-1.0000, 0.9902, 0.6039]]) ```
阅读全文

相关推荐

# -*- coding: utf-8 -*- """ Created on Fri Mar 5 19:13:21 2021 @author: LXM """ import torch import torch.nn as nn from torch.autograd import Function class UpdateRange(nn.Module): def __init__(self, device): super(UpdateRange, self).__init__() self.device = device self.flag = 0 self.fmin = torch.zeros((1), dtype = torch.float32, device = self.device) self.fmax = torch.zeros((1), dtype = torch.float32, device = self.device) def Update(self, fmin, fmax): if self.flag == 0: self.flag = 1 new_fmin = fmin new_fmax = fmax else: new_fmin = torch.min(fmin, self.fmin) new_fmax = torch.max(fmax, self.fmax) self.fmin.copy_(new_fmin) self.fmax.copy_(new_fmax) @torch.no_grad() def forward(self, input): fmin = torch.min(input) fmax = torch.max(input) self.Update(fmin, fmax) class Round(Function): @staticmethod def forward(self, input): # output = torch.round(input) # output = torch.floor(input) output = input.int().float() return output @staticmethod def backward(self, output): input = output.clone() return input class Quantizer(nn.Module): def __init__(self, bits, device): super(Quantizer, self).__init__() self.bits = bits self.scale = 1 self.UpdateRange = UpdateRange(device) self.qmin = torch.tensor((-((1 << (bits - 1)) - 1)), device = device) self.qmax = torch.tensor((+((1 << (bits - 1)) - 1)), device = device) def round(self, input): output = Round.apply(input) return output def Quantization(self): quant_range = float(1 << (self.bits - 1)) float_range = torch.max(torch.abs(self.UpdateRange.fmin), torch.abs(self.UpdateRange.fmax)) scale = 1 for i in range(32): if torch.round(float_range * (1 << i)) < quant_range: scale = 1 << i else: break self.scale = scale def forward(self, input): if self.training: self.UpdateRange(input) self.Quantization() output = (torch.clamp(self.round(input * self.scale), self.qmin, self.qmax)) / self.scale return output

class DropBlock_Ske(nn.Module): def __init__(self, num_point, block_size=7): super(DropBlock_Ske, self).__init__() self.keep_prob = 0.0 self.block_size = block_size self.num_point = num_point self.fc_1 = nn.Sequential( nn.Linear(in_features=25, out_features=25, bias=True), nn.ReLU(inplace=True), nn.Linear(in_features=25, out_features=25, bias=True), ) self.fc_2 = nn.Sequential( nn.Linear(in_features=25, out_features=25, bias=True), nn.ReLU(inplace=True), nn.Linear(in_features=25, out_features=25, bias=True), ) self.sigmoid = nn.Sigmoid() def forward(self, input, keep_prob, A): # n,c,t,v self.keep_prob = keep_prob if not self.training or self.keep_prob == 1: return input n, c, t, v = input.size() input_attention_mean = torch.mean(torch.mean(input, dim=2), dim=1).detach() # 32 25 input_attention_max = torch.max(input, dim=2)[0].detach() input_attention_max = torch.max(input_attention_max, dim=1)[0] # 32 25 avg_out = self.fc_1(input_attention_mean) max_out = self.fc_2(input_attention_max) out = avg_out + max_out input_attention_out = self.sigmoid(out).view(n, 1, 1, self.num_point) input_a = input * input_attention_out input_abs = torch.mean(torch.mean( torch.abs(input_a), dim=2), dim=1).detach() input_abs = input_abs / torch.sum(input_abs) * input_abs.numel() gamma = 0.024 M_seed = torch.bernoulli(torch.clamp( input_abs * gamma, min=0, max=1.0)).to(device=input.device, dtype=input.dtype) M = torch.matmul(M_seed, A) M[M > 0.001] = 1.0 M[M < 0.5] = 0.0 mask = (1 - M).view(n, 1, 1, self.num_point) return input * mask * mask.numel() / mask.sum()

pytorch部分代码如下:train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) samples, targets = mixup_fn(data, target) output = model(samples) optimizer.zero_grad() if use_amp: with torch.cuda.amp.autocast(): loss = torch.nan_to_num(criterion_train(output, targets)) scaler.scale(loss).backward() torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks or global_forward_hooks or global_forward_pre_hooks): return forward_call(*input, **kwargs) class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) target = torch.clamp(target, 0, index.size(1) - 1) index.scatter_(1, target.unsqueeze(1).type(torch.int64), 1) index = index[:, :x.size(1)] index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) 报错: File "/home/adminis/hpy/ConvNextV2_Demo/train+ca.py", line 46, in train loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss File "/home/adminis/anaconda3/envs/wln/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1051, in _call_impl return forward_call(*input, **kwargs) File "/home/adminis/hpy/ConvNextV2_Demo/models/utils.py", line 622, in forward index.scatter_(1, target.unsqueeze(1).type(torch.int64), 1) # target.data.view(-1, 1). RuntimeError: Index tensor must have the same number of dimensions as self tensor 帮我看看如何修改源代码

pytorch部分代码如下:train_loss, train_acc = train(model_ft, DEVICE, train_loader, optimizer, epoch,model_ema) for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device, non_blocking=True), Variable(target).to(device,non_blocking=True) # 3、将数据输入mixup_fn生成mixup数据 samples, targets = mixup_fn(data, target) # 4、将上一步生成的数据输入model,输出预测结果,再计算loss output = model(samples) # 5、梯度清零(将loss关于weight的导数变成0) optimizer.zero_grad() # 6、若使用混合精度 if use_amp: with torch.cuda.amp.autocast(): # 开启混合精度 loss = torch.nan_to_num(criterion_train(output, targets)) # 计算loss scaler.scale(loss).backward() # 梯度放大 torch.nn.utils.clip_grad_norm_(model.parameters(), CLIP_GRAD) if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks or global_forward_hooks or global_forward_pre_hooks): return forward_call(*input, **kwargs) class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) target = torch.clamp(target, 0, index.size(1) - 1) index.scatter(1, target.data.view(-1, 1).type(torch.int64), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) 报错:RuntimeError: Expected index [112, 1] to be smaller than self [16, 7] apart from dimension 1 帮我看看如何修改源代码

最新推荐

recommend-type

这是我的毕业设计,是一个前端和后端分离的电子商务系统。使用Springboot+Myb

这是我的毕业设计,是一个前端和后端分离的电子商务系统。使用Springboot+Mybatis框架,在前端方面,我使用Vue3.0技术对页面进行了重构。学会了它,也就学会了前后端分离的基础技术。欢迎各
recommend-type

嵌入式-嵌入式产品级项目之洗衣机程序设计-STM32-优秀毕业设计.zip

嵌入式_嵌入式产品级项目之洗衣机程序设计_STM32_优秀毕业设计
recommend-type

卷积加速-基于TVM实现的用于CUDA+AMDGPU的winograd卷积加速-附项目源码+加速对比测试-优质HPC项目实现

卷积加速_基于TVM实现的用于CUDA+AMDGPU的winograd卷积加速_附项目源码+加速对比测试_优质HPC项目实现
recommend-type

毕业设计论文SpringBoot+Vue博客系统_32.docx

毕业设计论文
recommend-type

火车票订票&JAVA&基于springBoot的火车票订票系统的设计与实现(毕业论文)

Mysql数据库,Java语言,Spring Boot框架。 会员信息管理: - 此功能模块允许管理员对会员信息进行管理,包括添加新会员、编辑已有会员信息、查看会员列表以及删除会员记录。 车次信息管理: - 这个功能模块用于管理车次信息,包括添加新的车次、编辑现有车次的信息、查看车次列表以及删除不需要的车次记录。 订票订单管理: - 订票订单管理模块允许管理员查看和管理所有的订票订单。管理员可以查看订单详情、处理订单状态、取消订单或进行退款等操作。 留言板管理: - 留言板管理功能允许管理员查看和管理网站或应用程序上的留言板内容。管理员可以审核留言、删除不当内容、回复用户留言等。
recommend-type

WPF渲染层字符绘制原理探究及源代码解析

资源摘要信息: "dotnet 读 WPF 源代码笔记 渲染层是如何将字符 GlyphRun 画出来的" 知识点详细说明: 1. .NET框架与WPF(Windows Presentation Foundation)概述: .NET框架是微软开发的一套用于构建Windows应用程序的软件框架。WPF是.NET框架的一部分,它提供了一种方式来创建具有丰富用户界面的桌面应用程序。WPF通过XAML(可扩展应用程序标记语言)与后台代码的分离,实现了界面的声明式编程。 2. WPF源代码研究的重要性: 研究WPF的源代码可以帮助开发者更深入地理解WPF的工作原理和渲染机制。这对于提高性能优化、自定义控件开发以及解决复杂问题时提供了宝贵的知识支持。 3. 渲染层的基础概念: 渲染层是图形用户界面(GUI)中的一个过程,负责将图形元素转换为可视化的图像。在WPF中,渲染层是一个复杂的系统,它包括文本渲染、图像处理、动画和布局等多个方面。 4. GlyphRun对象的介绍: 在WPF中,GlyphRun是TextElement类的一个属性,它代表了一组字形(Glyphs)的运行。字形是字体中用于表示字符的图形。GlyphRun是WPF文本渲染中的一个核心概念,它让应用程序可以精确控制文本的渲染方式。 5. 字符渲染过程: 字符渲染涉及将字符映射为字形,并将这些字形转化为能够在屏幕上显示的像素。这个过程包括字体选择、字形布局、颜色应用、抗锯齿处理等多个步骤。了解这一过程有助于开发者优化文本渲染性能。 6. OpenXML技术: OpenXML是一种基于XML的文件格式,用于存储和传输文档数据,广泛应用于Microsoft Office套件中。在WPF中,OpenXML通常与文档处理相关,例如使用Open Packaging Conventions(OPC)来组织文档中的资源和数据。了解OpenXML有助于在WPF应用程序中更好地处理文档数据。 7. 开发案例、资源工具及应用场景: 开发案例通常指在特定场景下的应用实践,资源工具可能包括开发时使用的库、框架、插件等辅助工具,应用场景则描述了这些工具和技术在现实开发中如何被应用。深入研究这些内容能帮助开发者解决实际问题,并提升其项目实施能力。 8. 文档教程资料的价值: 文档教程资料是开发者学习和参考的重要资源,它们包含详细的理论知识、实际操作案例和最佳实践。掌握这些资料中的知识点能够帮助开发者快速成长,提升项目开发的效率和质量。 9. .md文件的使用: .md文件通常指的是Markdown格式的文档。Markdown是一种轻量级标记语言,允许人们使用易读易写的纯文本格式编写文档,然后转换成有效的XHTML(或者HTML)文档。这种格式的文档非常适合编写教程、文档和开发笔记,因为它简洁且兼容性好。 通过以上知识点的解释,可以看出该资源文件是对WPF渲染机制特别是字符渲染过程的深入分析。开发者通过阅读这份笔记,可以更好地理解WPF内部工作原理,进而在实际开发中实现更高效的渲染和更精确的控制。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Twisted.trial:深入探索单元测试框架的内部工作机制

![Twisted.trial:深入探索单元测试框架的内部工作机制](https://files.realpython.com/media/Threading.3eef48da829e.png) # 1. Twisted.trial框架概述 Twisted.trial是Twisted框架的一部分,它是一个用于Python的单元测试框架,专门设计来支持异步编程。Twisted框架本身是一个事件驱动的网络引擎,支持多种传输层协议,如TCP、UDP、SSL等,并且能够用于开发各种网络应用,如服务器、客户端、分布式服务等。 Twisted.trial为编写测试用例提供了一个结构化和扩展性的平台,它
recommend-type

根据设定的阈值(比如一定百分比的相似度),判断二维码内容和图片内容是否匹配代码

在Python中,我们可以使用`skimage`库进行图像处理,并结合一些机器学习库如`scikit-image`或`OpenCV`来进行特征提取和相似度计算。下面是一个简单的例子,假设我们已经使用`pyzbar`库识别了二维码内容并保存为字符串`qr_code`,图片内容保存在`img_path`: ```python from skimage.feature import match_descriptors from skimage.measure import compare_ssim import cv2 # 加载图片 ref_image = cv2.imread(img_path
recommend-type

海康精简版监控软件:iVMS4200Lite版发布

资源摘要信息: "海康视频监控精简版监控显示" 是指海康威视公司开发的一款视频监控软件的轻量级版本。该软件面向需要在计算机上远程查看监控视频的用户,提供了基本的监控显示功能,而不需要安装完整的、资源占用较大的海康威视视频监控软件。用户通过这个精简版软件可以在电脑上实时查看和管理网络摄像机的画面,实现对监控区域的动态监视。 海康威视作为全球领先的视频监控产品和解决方案提供商,其产品广泛应用于安全防护、交通监控、工业自动化等多个领域。海康威视的产品线丰富,包括网络摄像机、DVR、NVR、视频综合管理平台等。海康的产品不仅在国内市场占有率高,而且在全球市场也具有很大的影响力。 描述中所指的“海康视频监控精简版监控显示”是一个软件或插件,它可能是“iVMS-4200Lite”这一系列软件产品之一。iVMS-4200Lite是海康威视推出的适用于个人和小型商业用户的一款简单易用的视频监控管理软件。它允许用户在个人电脑上通过网络查看和管理网络摄像机,支持多画面显示,并具备基本的录像回放功能。此软件特别适合初次接触海康威视产品的用户,或者是资源有限、对软件性能要求不是特别高的应用场景。 在使用“海康视频监控精简版监控显示”软件时,用户通常需要具备以下条件: 1. 与海康威视网络摄像机或者视频编码器相连接的网络环境。 2. 电脑上安装有“iVMS4200Lite_CN*.*.*.*.exe”这个精简版软件的可执行程序。 3. 正确的网络配置以及海康设备的IP地址,用户名和密码等信息,以便软件能够连接和管理网络摄像机。 该软件一般会有以下核心功能特点: 1. 支持多协议接入:兼容海康威视及其他主流品牌网络摄像机和视频编码器。 2. 实时视频浏览:支持多通道实时视频显示,用户可以根据需要选择合适的显示布局。 3. 远程控制:可以远程控制摄像机的PTZ(平移/倾斜/缩放)功能,方便监视和管理。 4. 录像回放:能够远程查看历史录像资料,进行视频资料的回放、检索和下载。 5. 异常报警处理:能够接收和显示网络摄像机的报警信号,并进行相关事件的处理。 由于该软件是精简版,其功能可能会比海康威视的全功能版软件受限,例如:缺少一些高级管理功能、用户界面可能不够华丽、第三方集成支持较少等。但即便如此,它在保证基本的视频监控显示和管理需求的同时,仍能为用户提供轻便和高效的监控体验。 考虑到海康威视在安全和隐私方面的责任,使用该软件时还需要注意数据的保护,确保监控视频内容不被未授权的第三方访问。此外,随着技术的发展和用户需求的变化,海康威视可能会不断更新和升级其软件,因此建议用户及时关注并更新到最新版本,以便享受更加稳定和丰富的功能体验。