基于transformer的语音情感识别模型
时间: 2023-09-07 07:15:11 浏览: 253
Transformer-Transducer语音识别
5星 · 资源好评率100%
基于Transformer的语音情感识别模型是指通过使用Transformer结构来对语音信号中的情感信息进行建模和识别的模型。 Transformer模型在语音情感识别领域取得了显著的成果,其多头自注意机制可以更有效地学习细粒度的特征,并减少模型的冗余度。
具体而言,这种基于Transformer的语音情感识别模型使用了一个可变形的Transformer结构,被称为DST(Deformable Speech Transformer)。DST模型通过一个轻量的决策网络来动态决定注意机制中的窗口大小,使模型能够根据输入语音的特性自适应地调整窗口的大小[3]。此外,DST还引入了与输入语音信号相关的偏移量,用于调整注意力窗口的位置,从而能够发现并关注到语音信号中有价值的情感信息。
DST模型的训练和评估可以按照以下步骤进行:
1. 模型部署:将语音识别接口封装为容器,以支持模型的部署。
2. 效果评估:使用WER(Word Error Rate)等指标对模型的识别准确率进行评估,并进行抽样人工校验结果。
3. 端到端语音识别:通过结合BERT语义建模和语音特征提取,实现整个语音识别过程的端到端建模。
通过以上步骤和DST模型的优化,可以获得在语音情感识别任务中表现良好的模型。这种基于Transformer的语音情感识别模型在实验中已经证明了其优越性,通过在IEMOCAP和MELD数据库上进行大量实验验证了其性能。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *3* [ICASSP2023论文分享 | DST:基于Transformer的可变形语音情感识别模型](https://blog.csdn.net/weixin_48827824/article/details/129489782)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [基于BERT的端到端语音识别模型开发指南.pdf](https://download.csdn.net/download/weixin_50409347/88191642)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文