解释一下代码 for j, d in enumerate(data_list): lat, lon = d['lat'], d['lon'] value = data_type[j] color = cmap(value / max(data_type)) ax.scatter(lon, lat, s=100, color=color, alpha=1.0)
时间: 2024-04-17 11:27:26 浏览: 69
这段代码是一个循环,用于绘制散点图。它遍历了一个名为data_list的数据列表,并使用enumerate函数获取索引和对应的元素。
在每次循环中,代码从当前元素d中提取经度(lon)和纬度(lat)的值。接下来,它从data_type列表中获取相应索引位置的值作为散点的数值。
然后,代码根据数值与data_type中的最大值比例,使用cmap函数来确定散点的颜色。cmap是一个颜色映射函数,它将数值映射到一组颜色中。
最后,代码使用matplotlib库(ax.scatter函数)绘制一个散点,位置由经度(lon)和纬度(lat)决定。散点的大小(s)为100,颜色(color)根据前面计算得到的color变量确定,透明度(alpha)为1.0。
相关问题
# 准备画轮廓图的数据点 X, Y = np.meshgrid(xgrid[::5], ygrid[::5][::-1]) land_reference = data.coverages[6][::5, ::5] land_mask = (land_reference > -9999).ravel() xy = np.vstack([Y.ravel(), X.ravel()]).T xy = np.radians(xy[land_mask]) # 创建两幅并排的图 fig, ax = plt.subplots(1, 2) fig.subplots_adjust(left=0.05, right=0.95, wspace=0.05) species_names = ['Bradypus Variegatus', 'Microryzomys Minutus'] cmaps = ['Purples', 'Reds'] for i, axi in enumerate(ax): axi.set_title(species_names[i]) # 用Basemap画出海岸线 m = Basemap(projection='cyl', llcrnrlat=Y.min(), urcrnrlat=Y.max(), llcrnrlon=X.min(), urcrnrlon=X.max(), resolution='c', ax=axi) m.drawmapboundary(fill_color='#DDEEFF') m.drawcoastlines() m.drawcountries() # 构建一个球形的分布核密度估计 kde = KernelDensity(bandwidth=0.03, metric='haversine') kde.fit(np.radians(latlon[species == i])) # 只计算大陆的值:-9999表示是海洋 Z = np.full(land_mask.shape[0], -9999.0) Z[land_mask] = np.exp(kde.score_samples(xy)) Z = Z.reshape(X.shape) # 画出密度的轮廓 levels = np.linspace(0, Z.max(), 25) axi.contourf(X, Y, Z, levels=levels, cmap=cmaps[i])
这段代码使用了 Matplotlib 库和 Basemap 库绘制了两幅并排的轮廓图。首先,使用 `np.meshgrid()` 函数生成了两个二维数组 `X` 和 `Y`,用于在 x 轴和 y 轴上绘制轮廓图的网格。然后,使用 `data.coverages[6][::5, ::5]` 获取了数据的第 6 个覆盖范围,并使用 `land_mask = (land_reference > -9999).ravel()` 创建了一个一维布尔数组,用于筛选出陆地上的数据点。接着,使用 `np.vstack()` 函数和 `np.radians()` 函数将筛选出的数据点转换为弧度制,并将其存储在 `xy` 变量中。接下来,使用 `Basemap()` 函数创建了一个地图投影,并使用 `m.drawmapboundary()`、`m.drawcoastlines()` 和 `m.drawcountries()` 函数绘制了地图边界、海岸线和国家边界。然后,使用 `KernelDensity()` 函数创建了一个球形分布的核密度估计,使用 `kde.fit()` 函数拟合了第一个物种的数据,并将其存储在 `Z` 变量中。接着,使用 `np.full()` 函数创建一个全为 -9999 的一维数组 `Z`,并将筛选出的陆地上的数据点的密度估计结果存储在 `Z` 中。然后,使用 `Z.reshape()` 函数将一维数组 `Z` 转换为二维数组,以匹配 `X` 和 `Y` 的形状。最后,使用 `axi.contourf()` 函数绘制了密度的轮廓,并使用 `cmaps[i]` 参数指定了颜色映射。
运行时有错误,怎么改代码才能得到结果?请完整的将代码写出来
要确保代码能够正确运行并得到预期的结果,需要对原始代码进行一些修改和完善。以下是完整的修正后的代码:
```python
import numpy as np
from scipy.spatial.distance import pdist, squareform
import matplotlib.pyplot as plt
from tqdm import tqdm
# 数据提取
waste_sources = [
('石桥镇', 107.118101, 31.298319, 2.86),
('百节镇', 107.454102, 31.023069, 0.87),
('万家镇', 107.623465, 30.956475, 3.71),
('南岳镇', 107.502044, 31.215063, 1.52),
# ... 省略其他数据 ...
('太平镇', 108.064519, 32.049827, 0.39)
]
recycling_centers = [
('分类回收节点 1', 107.381715, 31.469126, 150000, 65, 7.4, 0.87),
('分类回收节点 2', 107.520675, 31.374130, 160000, 60, 6.8, 0.88),
('分类回收节点 3', 107.311350, 31.182932, 155000, 62, 6.5, 0.85),
('分类回收节点 4', 107.454102, 31.023069, 160000, 65, 6.6, 0.84),
('分类回收节点 5', 107.662229, 31.559861, 156000, 70, 7.1, 0.88),
('分类回收节点 6', 107.792071, 31.415139, 170000, 68, 6.5, 0.82),
('分类回收节点 7', 107.934038, 31.355846, 165000, 65, 6.8, 0.83),
('分类回收节点 8', 107.862678, 31.385848, 165000, 65, 6.5, 0.86),
('分类回收节点 9', 107.924146, 31.864973, 150000, 64, 6.5, 0.84),
('分类回收节点 10', 107.821522, 31.385848, 160000, 72, 7.2, 0.88)
]
remanufacturing_centers = [
('再制造中心 1', 107.095849, 30.759173, 300000, 200, 102, 0.87),
('再制造中心 2', 107.393755, 30.881567, 305000, 210, 108, 0.86),
('再制造中心 3', 107.293659, 31.166667, 310000, 205, 98, 0.88),
('再制造中心 4', 107.561008, 31.511537, 320000, 210, 96, 0.85),
('再制造中心 5', 107.954275, 31.189239, 315000, 215, 102, 0.89)
]
landfills = [
('填埋场 1', 107.063886246, 31.3623822568, 54, 6.23),
('填埋场 4', 107.92318, 31.583337, 55, 6.21),
('填埋场 7', 107.364349, 30.741412, 58, 6.32)
]
# 计算两个地点之间的欧氏距离(公里)
def haversine(lat1, lon1, lat2, lon2):
R = 6371 # 地球半径(公里)
phi1, phi2 = np.radians(lat1), np.radians(lat2)
delta_phi = np.radians(lat2 - lat1)
delta_lambda = np.radians(lon2 - lon1)
a = np.sin(delta_phi / 2) ** 2 + np.cos(phi1) * np.cos(phi2) * np.sin(delta_lambda / 2) ** 2
c = 2 * np.arctan2(np.sqrt(a), np.sqrt(1 - a))
return R * c
# 计算所有节点间的距离矩阵
def calculate_distances(sources, centers, landfills, manufacturing_centers):
points = []
for _, lat, lon, _ in sources:
points.append((lat, lon))
for _, lat, lon, _, _, _, _ in centers:
points.append((lat, lon))
for _, lat, lon, _, _, _, _ in manufacturing_centers:
points.append((lat, lon))
for _, lat, lon, _, _ in landfills:
points.append((lat, lon))
dist = pdist(points, metric=lambda u, v: haversine(u[0], u[1], v[0], v[1]))
return squareform(dist)
# 目标函数定义
def objective_function(positions, distances, waste_sources, recycling_centers, remanufacturing_centers, landfills):
n_sources = len(waste_sources)
n_centers = len(recycling_centers)
n_manu_centers = len(remanufacturing_centers)
n_landfills = len(landfills)
source_positions = positions[:n_sources].astype(int)
center_positions = positions[n_sources:n_sources + n_centers].astype(int)
manu_center_positions = positions[n_sources + n_centers:-n_landfills].astype(int)
landfill_positions = positions[-n_landfills:].astype(int)
total_cost = 0
total_emission = 0
alpha = 5.5 # 单位距离运输成本(元/吨•千米)
beta = 0.35 # 单位距离运输碳排放因子(kg/t•km)
for i in range(n_sources):
source_id = source_positions[i]
source_waste = waste_sources[i][3]
for j in range(n_centers):
if center_positions[j] == source_id:
rec_id = j
rec_fixed_cost = recycling_centers[j][3]
rec_variable_cost = recycling_centers[j][4]
rec_emission = recycling_centers[j][5]
transport_distance = distances[i][j + n_sources]
transport_cost = alpha * source_waste * transport_distance
transport_emission = beta * source_waste * transport_distance
total_cost += rec_fixed_cost + rec_variable_cost * source_waste + transport_cost
total_emission += rec_emission * source_waste + transport_emission
rec_waste_to_manu = source_waste * 0.5
rec_waste_to_landfill = source_waste * 0.5
for k in range(n_manu_centers):
if manu_center_positions[k] == rec_id:
manu_fixed_cost = remanufacturing_centers[k][3]
manu_variable_cost = remanufacturing_centers[k][4]
manu_emission = remanufacturing_centers[k][5]
transport_distance_to_manu = distances[j + n_sources][k + n_sources + n_centers]
transport_cost_to_manu = alpha * rec_waste_to_manu * transport_distance_to_manu
transport_emission_to_manu = beta * rec_waste_to_manu * transport_distance_to_manu
total_cost += manu_fixed_cost + manu_variable_cost * rec_waste_to_manu + transport_cost_to_manu
total_emission += manu_emission * rec_waste_to_manu + transport_emission_to_manu
break
for l in range(n_landfills):
if landfill_positions[l] == rec_id:
landfill_variable_cost = landfills[l][3]
landfill_emission = landfills[l][4]
transport_distance_to_landfill = distances[j + n_sources][l + n_sources + n_centers + n_manu_centers]
transport_cost_to_landfill = alpha * rec_waste_to_landfill * transport_distance_to_landfill
transport_emission_to_landfill = beta * rec_waste_to_landfill * transport_distance_to_landfill
total_cost += landfill_variable_cost * rec_waste_to_landfill + transport_cost_to_landfill
total_emission += landfill_emission * rec_waste_to_landfill + transport_emission_to_landfill
break
break
return total_cost, total_emission
# PSO 初始化
def initialize_population(num_particles, num_dimensions):
particles = np.random.rand(num_particles, num_dimensions)
velocities = np.zeros_like(particles)
personal_best_positions = particles.copy()
personal_best_values = np.full(num_particles, float('inf'))
global_best_position = None
global_best_value = float('inf')
return particles, velocities, personal_best_positions, personal_best_values, global_best_position, global_best_value
# 更新个人最佳和全局最佳
def update_best_positions(values, particles, personal_best_values, personal_best_positions, global_best_value, global_best_position):
for i, value in enumerate(values):
if value < personal_best_values[i]:
personal_best_positions[i] = particles[i]
personal_best_values[i] = value
global_best_value_new = np.min(personal_best_values)
if global_best_value_new < global_best_value:
global_best_index = np.argmin(personal_best_values)
global_best_value = global_best_value_new
global_best_position = personal_best_positions[global_best_index].copy()
return personal_best_positions, personal_best_values, global_best_value, global_best_position
# 更新速度和位置
def update_particles(particles, velocities, personal_best_positions, global_best_position, w=0.5, c1=2, c2=2):
r1 = np.random.rand(*particles.shape)
r2 = np.random.rand(*particles.shape)
velocities = w * velocities + c1 * r1 * (personal_best_positions - particles) + c2 * r2 * (global_best_position - particles)
particles += velocities
return particles, velocities
# 主程序
def pso_main(distances, waste_sources, recycling_centers, remanufacturing_centers, landfills, max_iterations=100, num_particles=30, verbose=True):
num_dimensions = len(waste_sources) + len(recycling_centers) + len(remanufacturing_centers) + len(landfills)
particles, velocities, personal_best_positions, personal_best_values, global_best_position, global_best_value = initialize_population(num_particles, num_dimensions)
best_costs = []
best_emissions = []
for iteration in tqdm(range(max_iterations)):
costs, emissions = zip(*[objective_function(p, distances, waste_sources, recycling_centers, remanufacturing_centers, landfills) for p in particles])
personal_best_positions, personal_best_values, global_best_value, global_best_position = update_best_positions(costs, particles, personal_best_values, personal_best_positions, global_best_value, global_best_position)
best_costs.append(min(costs))
best_emissions.append(min(emissions))
particles, velocities = update_particles(particles, velocities, personal_best_positions, global_best_position)
if verbose:
print(f'Best Cost: {best_costs[-1]}')
return best_costs, best_emissions, global_best_position
if __name__ == "__main__":
distances = calculate_distances(waste_sources, recycling_centers, landfills, remanufacturing_centers)
best_costs, best_emissions, global_best_position = pso_main(distances, waste_sources, recycling_centers, remanufacturing_centers, landfills)
# 输出总成本和总碳排放量
print(f"Final Total Cost: {best_costs[-1]}")
print(f"Final Total Emission: {best_emissions[-1]}")
# 提取并输出选中的节点
selected_recycling_nodes = [int(pos) for pos in global_best_position[len(waste_sources):len(waste_sources) + len(recycling_centers)]]
selected_remanufacturing_nodes = [int(pos) for pos in global_best_position[len(waste_sources) + len(recycling_centers):-len(landfills)]]
print("Selected Recycling Nodes:")
for i, node in enumerate(selected_recycling_nodes):
print(f"Recycling Center {i+1}: Node {node}")
print("Selected Remanufacturing Nodes:")
for i, node in enumerate(selected_remanufacturing_nodes):
print(f"Remanufacturing Center {i+1}: Node {node}")
# 绘制收敛曲线
fig, ax1 = plt.subplots()
ax1.plot(best_costs, 'r-', label='Cost')
ax1.set_xlabel('Iterations')
ax1.set_ylabel('Total Cost')
ax2 = ax1.twinx()
ax2.plot(best_emissions, 'b-', label='Emission')
ax2.set_ylabel('Total Emission')
plt.title('Convergence of PSO Algorithm')
fig.tight_layout()
plt.show()
```
### 主要修改点:
1. **数据结构优化**:将 `waste_sources`、`recycling_centers`、`remanufacturing_centers` 和 `landfills` 的数据结构调整为列表格式,便于后续处理。
2. **索引范围修正**:在 `objective_function` 中,确保 `source_positions`、`center_positions`、`manu_center_positions` 和 `landfill_positions` 的索引范围正确。
3. **粒子群算法初始化和更新**:确保初始粒子和速度正确初始化,并且在更新过程中避免出现越界或逻辑错误。
4. **结果输出和绘图**:添加了最终总成本和总碳排放量的输出,并绘制了粒子群算法的收敛曲线。
这样,代码应该可以正常运行并得到预期的结果。如果有任何进一步的问题,请随时告知。
阅读全文