if num_process == 1: inference_video(args, video_save_path) return 啥意思
时间: 2024-04-19 20:30:38 浏览: 92
这段代码是一个条件语句,用于判断 `num_process` 的值是否等于 1。如果 `num_process` 的值等于 1,那么会执行 `inference_video(args, video_save_path)` 这个函数来进行视频推理,并将结果保存在 `video_save_path` 中。然后,使用 `return` 关键字结束当前的函数或方法的执行。
简而言之,这段代码的作用是当 `num_process` 的值为 1 时,执行视频推理操作,并返回结果。
相关问题
代码解释# Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s save_path = str(Path(out) / Path(p).name) s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, names[int(c)]) # add to string # Write results for *xyxy, conf, cls in det: if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh with open(save_path[:save_path.rfind('.')] + '.txt', 'a') as file: file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format if save_img or view_img: # Add bbox to image label = '%s %.2f' % (names[int(cls)], conf) if label is not None: if (label.split())[0] == 'person': people_coords.append(xyxy) # plot_one_box(xyxy, im0, line_thickness=3) plot_dots_on_people(xyxy, im0) # Plot lines connecting people distancing(people_coords, im0, dist_thres_lim=(100, 150)) # Print time (inference + NMS) print('%sDone. (%.3fs)' % (s, t2 - t1)) # Stream results if 1: ui.showimg(im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h)) vid_writer.write(im0)
这段代码是目标检测算法的输出结果处理部分。主要包括以下几个步骤:
1. 对每张图片的检测结果进行处理,包括将检测框从输入图像的尺寸缩放到输出图像的尺寸,并将结果写入文本文件中。
2. 对每个类别的检测结果统计数量,并将数量和类别名称添加到输出字符串中。
3. 对每个检测到的目标绘制边界框,并在边界框上标注类别和置信度。
4. 如果检测到的目标是人,则将其坐标保存在列表中,并在图像上绘制点和连线进行社交距离监测。
5. 将处理后的图像展示出来,并将图像保存到文件中。
下面这段代码的作用是什么:def ovssc_inference( data_pickle_path: str, model_ckpt_path: str, dump_path: str = "visualization/", ): args = config_parser().parse_args( args=["--load", model_ckpt_path, "--file_path", data_pickle_path] ) with open(os.path.dirname(args.load) + "/args.pkl", "rb") as file: exp_args = pickle.load(file) for arg in vars(exp_args): if any(arg == s for s in ["device", "file_path", "load"]): continue setattr(args, arg, getattr(exp_args, arg)) args.domain_randomization = False scene_bounds = tuple(args.scene_bounds) logging.info("Preparing batch")
这段代码的作用是进行 OVSSC 推理,其中 data_pickle_path 是数据 pickle 文件的路径,model_ckpt_path 是模型的 checkpoint 文件路径,dump_path 是可视化结果的保存路径。代码中还加载了模型的参数,并设置了一些参数,最后进行了批处理。
阅读全文