cross attention GRU pytorch代码
时间: 2024-11-03 21:16:38 浏览: 29
Cross-Attention GRU (长短时记忆网络) 结合了注意力机制,常用于处理序列到序列的问题,在PyTorch框架中实现这样的模型需要一些步骤。首先,你需要安装必要的库,如PyTorch、transformers等。
下面是一个简单的示例代码片段,展示了如何创建一个基于GRU的自注意力模块:
```python
import torch
from torch import nn
from transformers import MultiheadAttention
class CrossAttentionGRU(nn.Module):
def __init__(self, input_size, hidden_size, num_heads=8, dropout=0.1):
super(CrossAttentionGRU, self).__init__()
# 使用MultiheadAttention层作为注意力部分
self.self_attention = MultiheadAttention(input_size, num_heads, dropout=dropout)
self.gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, mask=None):
# 自注意力计算
context, _ = self.self_attention(query, key, value, attn_mask=mask)
# 将注意力上下文输入GRU
gru_input = torch.cat((query, context), dim=-1)
gru_output, _ = self.gru(gru_input, None)
return gru_output, context
# 创建一个实例并传递数据
model = CrossAttentionGRU(128, 64)
query = torch.randn(10, 5, 128)
key = torch.randn(10, 15, 128)
value = torch.randn(10, 15, 128)
mask = torch.BoolTensor(query.size(1), key.size(1)).triu().unsqueeze(0)
output, context = model(query, key, value, mask)
```
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044930.png)
![-](https://img-home.csdnimg.cn/images/20241231044736.png)
![.zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![.zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://img-home.csdnimg.cn/images/20250102104920.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)