float Gyro_z=0; float fil_Acc_x,fil_Acc_y,fil_Gyro_z; float Angle_z=0; float Angle_z,Angle_Z=90; float coe_Gyro_z=0.2; float IMU660ra_FIFO[11]; int moto_flag=0; int gyro_i=0; int start_flag; #define dt 0.005 /************************************************************************** 函数功能:递推平均滤波算法 处理角速度 入口参数:无 返回 值:无 **************************************************************************/ void IMU660ra_newValues() { float sum=0; static float gyro[100],sum_gyro; static int gyro_flag=0,Gyro_flag=0; imu660ra_get_gyro(); if(gyro_flag==0) { gyro[gyro_i]= imu660ra_gyro_z; fil_Gyro_z=0.0; gyro_i++; if(gyro_i==99) { moto_flag=1; for(gyro_i=0;gyro_i<100;gyro_i++) { sum_gyro+=gyro[gyro_i]; } gyro_flag=1; start_flag=1; } } if(gyro_flag==1) { Gyro_z = (float)(imu660ra_gyro_z-sum_gyro/100)/16.3835; if(abs((int)Gyro_z)<3)//角速度小于3时 默认为小车静止 { Gyro_z=0; } IMU660ra_FIFO[Gyro_flag]=Gyro_z; for(Gyro_flag=0;Gyro_flag<10;Gyro_flag++) { sum+=IMU660ra_FIFO[Gyro_flag];//求当前数组的合,再取平均值 } fil_Gyro_z=sum/10; } } /************************************************************************** 函数功能:对角速度积分 得到角度 入口参数:无 返回 值:无 **************************************************************************/ void Get_angle() { IMU660ra_newValues(); Angle_Z-=fil_Gyro_z*dt; if(Angle_Z>=360) Angle_Z=Angle_Z-360; if(Angle_Z<=-360) Angle_Z=Angle_Z+360; }

时间: 2023-07-23 12:02:24 浏览: 113
RAR

Gyro_1.rar_Work It_gyro_gyro matlab_gyro simulink

根据您提供的代码,我看到您正在使用递推平均滤波算法处理陀螺仪的角速度数据,并通过积分得到角度。根据代码逻辑,可能存在以下几个问题: 1. 变量重复定义:您在代码中定义了两个名为Angle_z的变量,这可能会导致混淆和逻辑错误。建议您删除其中一个变量的定义。 2. 数据处理逻辑:在IMU660ra_newValues()函数中,您计算了滤波后的角速度fil_Gyro_z。然而,在Get_angle()函数中,您使用的是未经滤波的角速度Gyro_z进行积分。建议您在Get_angle()函数中使用fil_Gyro_z进行积分。 3. 角度更新频率:根据代码中的dt变量,您的角度更新频率为1/dt,即200Hz。这意味着每秒更新200次角度。如果您认为更新不实时,可以尝试增加陀螺仪的采样率或者减小dt的值。 4. 积分误差累积:积分过程中会存在误差累积的问题,尤其是当陀螺仪数据不准确或存在噪声时。您可以考虑使用其他方法来校正积分误差,例如使用加速度计进行校准或者使用更高级的滤波算法。 请注意,以上只是对您提供的代码进行初步分析,并给出了可能存在的问题和建议。如果问题仍然存在或者需要更详细的帮助,请提供更多相关代码和问题的描述,以便我能够更准确地帮助您解决问题。
阅读全文

相关推荐

close all clear clc disp('***** 基于EKF的位置速度观测组合导航程序 *****'); disp('Step1:加载数据;'); load IMU_data200.mat %惯导原始数据 load Reference_data.mat %GPS测量数据 disp('Step2:初始化参数;'); %% 一些导航参数常数项 WIE = 7.292115e-5; % 地球自转角速度 r0 = 6378137.0; % 地球半径 EE = 0.0818191908426; % 偏心率 d2r = pi/180; % degree to radian r2d = 180/pi; % radian to degree dh2rs = d2r/3600; % deg/h to rad/s %% 导航坐标系下初始化姿态,速度,位置 yaw = (0)*pi/180;%航向角 pitch = 0*pi/180;%俯仰角 roll = 0*pi/180;%滚动角 cbn=eul2dcm(roll,pitch,yaw); cnb=cbn'; q=dcm2quat(cbn)'; Vn=0;%北向速度 Ve=0;%东向速度 Vd=0;%地向速度 V_last=[Vn Ve Vd]'; Lati = 31.4913627505302*pi/180;%纬度 Longi= 120.849577188492*pi/180;%经度 Alti = 6.6356;%高度 sampt0=1/200;%惯导系统更新时间 Rn = r0*(1-EE^2)/(1-EE^2*(sin(Lati))^2)^1.5; %子午圈曲率半径 Re = r0/(1-EE^2*(sin(Lati))^2)^0.5; %卯酉圈曲率半径 g_u = -9.7803267711905*(1+0.00193185138639*sin(Lati)^2)... /((1-0.00669437999013*sin(Lati)^2)^0.5 *(1.0 + Alti/r0)^2); g = [0 0 -g_u]';%重力 g0=9.80665; %% 卡尔曼滤波P、Q、R设置 % P的设置 std_roll = (5)*d2r; std_pitch = (5)*d2r; std_yaw = (60)*d2r; std_vel = 0.1; std_pos = 5; std_gyro = 3*0.5*dh2rs; % 陀螺随机漂移0.5度/小时 std_acc = 3*0.15e-3*g0; % 加表零偏0.15mg Pfilter = diag([std_roll^2 std_pitch^2 std_yaw^2 std_vel^2 std_vel^2 std_vel^2 (std_pos/3600/30/57.3)^2 (std_pos/3600/30/57.3)^2 std_pos^2 std_gyro^2 std_gyro^2 std_gyro^2 std_acc^2 std_acc^2 std_acc^2]); % Q的设置 std_Wg = 0.15*(2.909*1e-4); % 陀螺漂移噪声,度/根号小时转化成rad/根号秒 std_Wa = 0.21/60/3; % 加表漂移噪声 Qkf = diag([std_Wg^2 std_Wg^2 std_Wg^2 std_Wa^2 std_Wa^2 std_Wa^2]); G = zeros(15, 6); F = zeros(15); F_i=zeros(9,9); F_s=zeros(9,6); H = zeros(6,15); H(1:3,4:6) = eye(3); H(4:6,7:9) = eye(3); % R的设置 R = diag([std_vel^2 std_vel^2 std_vel^2 (std_pos/3600/30/57.3)^2 (std_pos/3600/30/57.3)^2 (std_pos)^2]);

最新推荐

recommend-type

教师节主题班会.pptx

教师节主题班会.pptx
recommend-type

学生网络安全教育主题班会.pptx

学生网络安全教育主题班会.pptx
recommend-type

世界环境日主题班会.pptx

世界环境日主题班会.pptx
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自