msg = bytearray() msg=msg+binascii.a2b_hex(dataaa["sourceaddress"]) dataaa["sourceaddress"]="0e80"上面的代码有什么问题

时间: 2023-07-06 14:36:02 浏览: 42
上面的代码将`dataaa`字典中的`sourceaddress`键对应的值转换成二进制数据后,通过`+=`运算符将其添加到了`bytearray`类型的`msg`变量中。但是,`dataaa`字典中的`sourceaddress`键对应的值是字符串类型的`"0e80"`,而在Python中,字符串类型的变量是不可变的,因此不能直接使用`+=`运算符对其进行修改。 如果要修改`dataaa`字典中的`sourceaddress`键对应的值,可以使用以下代码: ```python import binascii dataaa = {"sourceaddress": "0e80"} binary_data = binascii.a2b_hex(dataaa["sourceaddress"]) dataaa["sourceaddress"] = binary_data msg = bytearray() msg += dataaa["sourceaddress"] ``` 首先使用`binascii.a2b_hex()`函数将`dataaa["sourceaddress"]`转换成二进制数据,然后将其赋值给`dataaa["sourceaddress"]`,这样`dataaa`字典中的`sourceaddress`键对应的值就变成了二进制数据。最后,将`dataaa["sourceaddress"]`添加到`bytearray`类型的`msg`变量中。 注意,如果`dataaa`字典中的`sourceaddress`键对应的值本来就是二进制数据,那么就不需要进行转换,直接将其添加到`msg`变量中即可。

相关推荐

import socket import struct # DOIP服务器地址和端口号 DOIP_SERVER_IP = "192.168.0.1" DOIP_SERVER_PORT = 13400 # DOIP消息类型 DOIP_TYPE_ROUTING_ACTIVATION_REQUEST = 0x0000 DOIP_TYPE_ROUTING_ACTIVATION_RESPONSE = 0x0001 DOIP_TYPE_DIAGNOSTIC_MESSAGE = 0x8001 # 构造DOIP连接请求消息 def build_doip_activation_request(): msg = bytearray.fromhex("000000150200000000000000000000000000000000000000") return msg # 解析DOIP连接响应消息 def parse_doip_activation_response(msg): activation_status = struct.unpack(">H", msg[4:6])[0] return activation_status # 构造DOIP诊断消息 def build_doip_diagnostic_message(sid, data): msg = bytearray() msg.extend(struct.pack(">H", DOIP_TYPE_DIAGNOSTIC_MESSAGE)) msg.extend(struct.pack(">H", len(data) + 4)) msg.extend(struct.pack(">H", sid)) msg.extend(data) return msg # 连接DOIP服务器并发送消息 def send_doip_message(msg): with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: sock.connect((DOIP_SERVER_IP, DOIP_SERVER_PORT)) sock.sendall(msg) # 接收DOIP服务器响应消息 response = sock.recv(1024) print("Received:", response.hex()) # 关闭连接 sock.close() return response # 激活诊断 def activate_diagnostic(): msg = build_doip_activation_request() response = send_doip_message(msg) activation_status = parse_doip_activation_response(response) if activation_status == 0: print("Diagnostic activated") else: print("Diagnostic activation failed") # 发送诊断服务 def send_diagnostic_service(sid, data): msg = build_doip_diagnostic_message(sid, data) response = send_doip_message(msg) # 处理诊断服务响应 # ... # 示例:发送读取故障码服务 def read_dtc(): sid = 0x03 data = bytearray.fromhex("01") send_diagnostic_service(sid, data) # 激活诊断 activate_diagnostic() # 发送诊断服务 上面的代码 处理诊断回复的时候,如果回复超过1024字节 该怎么办,请优化代码

from pymodbus.client.sync import ModbusSerialClient as ModbusClient import serial, time def du(): client = ModbusClient(method='rtu', port='com4', baudrate=38400, bytesize=8, parity='N', stopbits=1) # print(client) # 连接到 Modbus 从机 client.connect() # 读取保持寄存器数据 holding_registers = client.read_holding_registers(address=18, count=9, unit=1) print(holding_registers) print('Holding Registers:', holding_registers.registers) def main(): # 打开 COM1 串口 # com1 = serial.Serial(port='com2', baudrate=38400, bytesize=8, parity='N', stopbits=1) # 创建 Modbus-RTU 主机对象 client = ModbusClient(method='rtu', port='com2', baudrate=38400, bytesize=8, parity='N', stopbits=1) # 连接到 Modbus 从机 client.connect() # 读取保持寄存器数据 holding_registers = client.read_holding_registers(address=0, count=9, unit=1) print('Holding Registers:', holding_registers.registers) # 读取输入寄存器数据 input_registers = client.read_input_registers(address=0, count=9, unit=1) print('Input Registers:', input_registers.registers) # 读取输入线圈数据 input_coils = client.read_discrete_inputs(address=0, count=9, unit=1) print('Input Coils:', input_coils.bits) # 读取输出线圈数据 output_coils = client.read_coils(address=0, count=9, unit=1) print('Output Coils:', output_coils.bits) # 修改保持寄存器数据 holding_registers.registers[0] = 10000 holding_registers.registers[1] = 5000 # 写入保持寄存器数据 client.write_registers(address=0, values=holding_registers.registers, unit=1) # 关闭连接 client.close() # 打开 COM2 串口 com2 = serial.Serial(port='com3', baudrate=38400, bytesize=8, parity='N', stopbits=1) # 将修改后的数据写入 COM2 串口 data = bytearray() data += holding_registers.encode() data += input_registers.encode() data += input_coils.encode() data += output_coils.encode() # print(data) com2.write(data) time.sleep(2) while True: main() du()中间的转发程序有问题。从机地址本来1,都被改成18 # 将修改后的数据写入 COM2 串口 data = bytearray() data += holding_registers.encode() data += input_registers.encode() data += input_coils.encode() data += output_coils.encode() # print(data) com2.write(data) time.sleep(2)最后的转发程序帮我看看咋修改。

帮我改进一这段代码import machine import time from machine import I2C from machine import Pin from machine import sleep class accel(): def __init__(self, i2c, addr=0x68): self.iic = i2c self.addr = addr self.iic.start() self.iic.writeto(self.addr, bytearray([107, 0])) self.iic.stop() def get_raw_values(self): self.iic.start() a = self.iic.readfrom_mem(self.addr, 0x3B, 14) self.iic.stop() return a def get_ints(self): b = self.get_raw_values() c = [] for i in b: c.append(i) return c def bytes_toint(self, firstbyte, secondbyte): if not firstbyte & 0x80: return firstbyte << 8 | secondbyte return - (((firstbyte ^ 255) << 8) | (secondbyte ^ 255) + 1) def get_values(self): raw_ints = self.get_raw_values() vals = {} vals["AcX"] = self.bytes_toint(raw_ints[0], raw_ints[1]) vals["AcY"] = self.bytes_toint(raw_ints[2], raw_ints[3]) vals["AcZ"] = self.bytes_toint(raw_ints[4], raw_ints[5]) vals["Tmp"] = self.bytes_toint(raw_ints[6], raw_ints[7]) / 340.00 + 36.53 vals["GyX"] = self.bytes_toint(raw_ints[8], raw_ints[9]) vals["GyY"] = self.bytes_toint(raw_ints[10], raw_ints[11]) vals["GyZ"] = self.bytes_toint(raw_ints[12], raw_ints[13]) return vals # returned in range of Int16 # -32768 to 32767 def val_test(self): # ONLY FOR TESTING! Also, fast reading sometimes crashes IIC from time import sleep while 1: print(self.get_values()) sleep(0.05) clk = Pin(("clk", 36), Pin.OUT_OD) sda = Pin(("sda", 37), Pin.OUT_OD) i2c = I2C(-1, clk, sda, freq=100000) #initializing the I2C method for ESP32 #i2c = I2C(scl=Pin(5), sda=Pin(4)) #initializing the I2C method for ESP8266 mpu= accel(i2c) while True: mpu.get_values() print(mpu.get_values()) time.sleep(2)

最新推荐

recommend-type

VB学生档案管理系统设计与实现.rar

计算机专业毕业设计VB精品论文资源
recommend-type

debugpy-1.6.3-cp37-cp37m-win_amd64.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

基于ssm的学生宿舍报修管理系统

开发语言:Java JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.6/5.7(或8.0) 数据库工具:Navicat 开发软件:idea 依赖管理包:Maven 代码+数据库保证完整可用,可提供远程调试并指导运行服务(额外付费)~ 如果对系统的中的某些部分感到不合适可提供修改服务,比如题目、界面、功能等等... 声明: 1.项目已经调试过,完美运行 2.需要远程帮忙部署项目,需要额外付费 3.本项目有演示视频,如果需要观看,请联系我v:19306446185 4.调试过程中可帮忙安装IDEA,eclipse,MySQL,JDK,Tomcat等软件 重点: 需要其他Java源码联系我,更多源码任你选,你想要的源码我都有! https://img-blog.csdnimg.cn/direct/e73dc0ac8d27434b86d886db5a438c71.jpeg
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

用Spring boot和vue写一个登录注册界面

好的,这是一个比较常见的技术问题,我可以为您提供一些参考资料和思路。首先,您可以使用Spring Boot作为后端框架来处理用户认证和注册的逻辑,比如使用Spring Security实现用户登录认证。同时,您还需要设计相应的数据模型和数据库表结构来存储用户信息。在前端方面,您可以使用Vue.js作为框架来构建登录注册页面,使用Axios来发起API请求并和后端进行交互。当然,在实现过程中,还需要考虑一些具体细节,比如数据校验、安全性和用户体验等方面。希望这些信息能够帮助到您。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、