Population(P(find(g_old>=g_new,nr))) = Offspring_p;
时间: 2024-03-04 07:51:20 浏览: 125
这是一个更新种群的操作,具体来说,`Population(P)`是一个结构体数组,表示当前的种群,`P`是一个向量,表示需要进行更新的个体下标,`find(g_old>=g_new,nr)`表示找到所有适应度值旧的个体中适应度值不如新的个体的个体下标,并返回其中前`nr`个个体的下标,`Offspring_p`是一个结构体数组,表示筛选后的子代个体信息。`Population(P(find(g_old>=g_new,nr)))) = Offspring_p`表示将找到的个体下标对应的个体信息用子代个体信息进行更新。这个操作的作用是将适应度值不如子代个体的老个体进行替换,以更新种群。这个操作可以让遗传算法不断寻找更优的解,以达到更好的优化效果。
相关问题
function offspring = crossover(mating_pool, crossover_rate,sparse_degree) population_size = size(mating_pool, 1);%获取行数即种群大小 offspring = zeros(population_size, size(mating_pool, 2));%初始化一个和配对的父母一样大小的矩阵,用来存放交叉后的新的后代 for i = 1:2:population_size-1 parent1 = mating_pool(i, :); parent2 = mating_pool(i+1, :); if rand() < crossover_rate % 根据交叉概率决定是否对当前的一对父母进行交叉操作 indices1 = find(parent1 == 1); indices2 = find(parent2 == 1);%找出每个父本中基因为 1 的位置,将这些位置存储在 indices1 和 indices2 中 num_to_swap = min([sparse_degree, length(indices1), length(indices2)]);% 确定要交换的基因数量,这个数量由稀疏度、父本1中基因为 1 的位置数量以及父本2中基因为 1 的位置数量中的最小值确定 if num_to_swap > 0 swap_indices1 = indices1(randperm(length(indices1), num_to_swap));%从每个父母中选择一些随机的位置用于交换 swap_indices2 = indices2(randperm(length(indices2), num_to_swap)); temp1 = parent1; temp2 = parent2; temp1(swap_indices1) = parent2(swap_indices2); temp2(swap_indices2) = parent1(swap_indices1); % Force sparsity temp1 = enforce_sparsity(temp1, sparse_degree); temp2 = enforce_sparsity(temp2, sparse_degree); offspring(i, :) = temp1;%经过交叉后的新的后代存入后代矩阵中 offspring(i+1, :) = temp2; else offspring(i, :) = parent1;%如果不进行交叉操作,那么子代就直接是父母 offspring(i+1, :) = parent2; end else offspring(i, :) = parent1; offspring(i+1, :) = parent2; end end end上面这个算法是什么交叉方式
这是一种基因型部分匹配交叉(Partially-Mapped Crossover, PMX)的交叉方式。在该方式中,首先随机选择两个父本,然后根据交叉概率决定是否对它们进行交叉操作。如果进行交叉操作,首先找出每个父本中基因为1的位置,将这些位置存储在indices1和indices2中。接着,确定要交换的基因数量,这个数量由稀疏度、父本1中基因为1的位置数量以及父本2中基因为1的位置数量中的最小值确定。然后从每个父母中选择一些随机的位置用于交换,将这些位置上的基因进行交叉操作。最后,根据稀疏度对交叉后的个体进行修剪,生成新的后代。如果不进行交叉操作,那么子代就直接是父母。
import deap import random from deap import base, creator, tools, algorithms import numpy as np import pandas as pd # 参数 stations = 30 start_end_stations = [1, 2, 5, 8, 10, 14, 17, 18, 21, 22, 25, 26, 27, 30] min_interval = 108 min_stopping_time = 20 max_stopping_time = 120 passengers_per_train = 1860 min_small_loop_stations = 3 max_small_loop_stations = 24 average_boarding_time = 0.04 # 使用 ExcelFile ,通过将 xls 或者 xlsx 路径传入,生成一个实例 stations_kilo1 = pd.read_excel(r'D:\桌面\附件2:区间运行时间(1).xlsx', sheet_name="Sheet1") stations_kilo2 = pd.read_excel(r'D:\桌面\附件3:OD客流数据(1).xlsx', sheet_name="Sheet1") stations_kilo3 = pd.read_excel(r'D:\桌面\附件4:断面客流数据.xlsx', sheet_name="Sheet1") print(stations_kilo1) print(stations_kilo2) print(stations_kilo3) # 适应度函数 def fitness_function(individual): big_loop_trains, small_loop_trains, small_loop_start, small_loop_end = individual small_loop_length = small_loop_end - small_loop_start if small_loop_length < min_small_loop_stations or small_loop_length > max_small_loop_stations: return 1e9, cost = (big_loop_trains + small_loop_trains) * (stations - 1) * min_interval + average_boarding_time * passengers_per_train * (big_loop_trains + small_loop_trains) return cost, # 创建适应度和个体类 creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) creator.create("Individual", list, fitness=creator.FitnessMin) # 注册初始化函数 toolbox = base.Toolbox() toolbox.register("big_loop_trains", random.randint, 1, 10) toolbox.register("small_loop_trains", random.randint, 1, 10) toolbox.register("small_loop_start", random.choice, start_end_stations) toolbox.register("small_loop_end", random.choice, start_end_stations) toolbox.register("individual", tools.initCycle, creator.Individual, (toolbox.big_loop_trains, toolbox.small_loop_trains, toolbox.small_loop_start, toolbox.small_loop_end), n=1) toolbox.register("population", tools.initRepeat, list, toolbox.individual) # 注册遗传算法操作 toolbox.register("mate", tools.cxTwoPoint) toolbox.register("mutate", tools.mutUniformInt, low=[1, 1, min(start_end_stations), min(start_end_stations)], up=[10, 10, max(start_end_stations), max(start_end_stations)], indpb=0.5) toolbox.register("select", tools.selBest) toolbox.register("evaluate", fitness_function) # 设置遗传算法参数 population_size = 100 crossover_probability = 0.8 mutation_probability = 0.2 num_generations = 100 # 初始化种群 population = toolbox.population(n=population_size) # 进化 for gen in range(num_generations): offspring = algorithms.varAnd(population, toolbox, cxpb=crossover_probability, mutpb=mutation_probability) fits = toolbox.map(toolbox.evaluate, offspring) for fit, ind in zip(fits, offspring): ind.fitness.values = fit population = toolbox.select(offspring, k=len(population)) # 找到最佳个体 best_individual = tools.selBest(population, k=1)[0] # 解码最佳个体 big_loop_trains, small_loop_trains, small_loop_start, small_loop_end = best_individual # 输出结果 print("Big Loop Trains:", big_loop_trains) print("Small Loop Trains:", small_loop_trains) print("Small Loop Start Station:", small_loop_start) print("Small Loop End Station:", small_loop_end)分析代码
这段代码是Python中导入了多个第三方库,包括deap、random、numpy和pandas,并使用了它们中的一些函数和类。其中,deap库用于遗传算法和进化计算方面的应用,numpy库用于科学计算和数学运算,pandas库用于数据处理和分析。在这段代码中,creator、tools和algorithms是deap库中的子模块,用于创建遗传算法的初始种群、定义适应度函数和执行遗传算法的演化过程。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)