3D卷积 LSTM pytorch代码
时间: 2023-10-23 12:10:34 浏览: 218
在PyTorch学习神经网络像CNN, BiLSTM.zip
由于缺乏具体的任务需求和数据集,无法提供完整的3D卷积LSTM的PyTorch代码。但是,可以提供一些基本的示例代码,供参考:
首先需要导入相关的PyTorch库:
```python
import torch.nn as nn
import torch
```
定义3D卷积LSTM模型:
```python
class ConvLSTM(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size, num_layers):
super(ConvLSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.kernel_size = kernel_size
self.num_layers = num_layers
self.conv_lstm = nn.ModuleList()
for i in range(self.num_layers):
if i == 0:
input_dim = self.input_size
else:
input_dim = self.hidden_size[i-1]
self.conv_lstm.append(nn.ConvLSTM2d(input_dim, self.hidden_size[i], self.kernel_size[i], 1,
self.kernel_size[i]//2, bias=True, batch_first=True))
def forward(self, input_tensor):
hidden_states = []
cell_states = []
for i in range(self.num_layers):
if i == 0:
x = input_tensor
else:
x = hidden_states[i-1][-1]
h, c = self.conv_lstm[i](x)
hidden_states.append(h)
cell_states.append(c)
return hidden_states, cell_states
```
其中,`ConvLSTM2d`是PyTorch中自带的3D卷积LSTM的实现,可以直接调用。在模型的`__init__`函数中,根据输入的参数定义多层的3D卷积LSTM模型。在模型的`forward`函数中,循环调用每一层3D卷积LSTM模型,并将每一层的隐藏状态和细胞状态保存下来。
使用3D卷积LSTM模型进行训练:
```python
input_tensor = torch.randn(batch_size, seq_len, input_channels, input_height, input_width)
model = ConvLSTM(input_channels, hidden_channels, kernel_size, num_layers)
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
optimizer.zero_grad()
hidden_states, cell_states = model(input_tensor)
# 在这里进行下一步的操作,例如计算损失、反向传播、更新参数等
```
在训练过程中,首先需要构造一个随机的输入张量`input_tensor`,然后定义模型、优化器等,并在每个epoch中调用模型,得到每一层的隐藏状态和细胞状态。在这里可以根据具体的任务需求,进行下一步的操作。
阅读全文