matlab实现ceemd
时间: 2023-09-14 07:11:38 浏览: 91
CEEMD(Complete Ensemble Empirical Mode Decomposition)是一种基于局部特征的信号分解方法,可以将非平稳信号分解为若干个本征模态函数(IMF)。以下是MATLAB实现CEEMD的示例代码:
```
function [imf] = ceemd(x, MAX_ITER, ens)
% x: input signal
% MAX_ITER: maximum number of sifting iterations
% ens: ensemble size
% imf: intrinsic mode functions
N = length(x);
imf = zeros(ens, N);
for ii = 1:ens
% add white noise to signal
x1 = x + randn(1,N);
% initialize the residue as the original signal
h = x1;
% set the sifting stopping criterion threshold
std_h = std(h);
if std_h == 0
imf(ii,:) = h;
continue;
end
eps = 0.01 * std_h;
for jj = 1:MAX_ITER
% calculate the upper and lower envelopes
u = h;
l = h;
for kk = 1:5
u = u + hilbert(l-u);
l = l + hilbert(u-l);
end
% calculate the average envelope
m = (u+l)/2;
% extract the residue
r = h - m;
% check if the residue is an IMF
if is_imf(r, eps, 5)
imf(ii,:) = r;
break;
end
% update the residue
h = r;
end
end
end
function [is_imf] = is_imf(x, eps, max_iter)
% x: input signal
% eps: threshold for sifting stopping criterion
% max_iter: maximum number of sifting iterations
% is_imf: true if x is an IMF, false otherwise
% initialize the sifting stopping criterion threshold
std_x = std(x);
if std_x == 0
is_imf = false;
return;
end
e = eps * std_x;
% initialize the maximum number of sifting iterations
iter = 0;
while iter < max_iter
% calculate the upper and lower envelopes
u = x;
l = x;
for kk = 1:5
u = u + hilbert(l-u);
l = l + hilbert(u-l);
end
% calculate the average envelope
m = (u+l)/2;
% extract the residue
r = x - m;
% check if the residue satisfies the sifting stopping criterion
if sum(abs(r)) < e
is_imf = true;
return;
end
% update the signal
x = r;
% increment the number of sifting iterations
iter = iter + 1;
end
is_imf = false;
end
```
其中,`ceemd`函数是主函数,它接受三个输入参数:输入信号 `x`、最大迭代次数 `MAX_ITER` 和集合大小 `ens`,并返回若干个IMF组成的矩阵 `imf`。`is_imf`函数是一个辅助函数,用于判断一个信号是否是IMF。
阅读全文