FDK算法实现锥束CT重建,给出python代码,输入为1880张RAW格式锥束投影图像,重建出三维模型并显示,已知SOD、SDD
时间: 2023-06-15 21:03:06 浏览: 485
锥束FDK重建算法
4星 · 用户满意度95%
由于FDK算法实现锥束CT重建需要用到大量的数学知识,这里给出一个简单的Python代码示例供参考:
```python
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage
def fdk_reconstruction(projections, angles, SOD, SDD, output_size):
num_projections = projections.shape[0]
height, width = projections.shape[1], projections.shape[2]
output_depth, output_height, output_width = output_size
# Calculate the center of rotation
mid_index = width // 2
center = np.array([mid_index] * num_projections)
# Calculate the projection positions
positions = (np.arange(width) - center[:, np.newaxis]) * SDD / SOD + center[:, np.newaxis]
# Convert angles to radians
angles = np.deg2rad(angles)
# Initialize the output volume
reconstruction = np.zeros(output_size)
# Create an array of z positions
zs = np.arange(output_depth) - (output_depth - 1) / 2
# Calculate the step size for each projection
step_size = SDD / SOD / output_height
# Loop over each projection
for i in range(num_projections):
# Calculate the sine and cosine of the angle
sin_theta = np.sin(angles[i])
cos_theta = np.cos(angles[i])
# Calculate the x and y positions of the projection
xs = positions[i] * cos_theta
ys = positions[i] * sin_theta
# Create a grid of x and y coordinates
x_grid, y_grid = np.meshgrid(np.arange(output_width), np.arange(output_height))
# Calculate the distance between each pixel and the projection line
distance = (xs[:, np.newaxis, np.newaxis] - x_grid[np.newaxis, :, :]) ** 2 + \
(ys[:, np.newaxis, np.newaxis] - y_grid[np.newaxis, :, :]) ** 2 + \
(zs[i] - output_depth / 2) ** 2
distance = np.sqrt(distance)
# Calculate the angles between each pixel and the projection line
beta = np.arccos((xs[:, np.newaxis, np.newaxis] - x_grid[np.newaxis, :, :]) / distance)
beta[np.isnan(beta)] = 0
# Calculate the weighted sum of the projections
reconstruction += np.sum(projections[i] * np.sin(beta) / distance * step_size, axis=0)
# Smooth the reconstruction using a Gaussian filter
reconstruction = scipy.ndimage.filters.gaussian_filter(reconstruction, sigma=1)
return reconstruction
# Load the projections and angles
projections = np.load('projections.npy')
angles = np.load('angles.npy')
# Set the SOD and SDD
SOD = 1000
SDD = 1500
# Set the output size
output_size = (512, 512, 512)
# Reconstruct the volume
reconstruction = fdk_reconstruction(projections, angles, SOD, SDD, output_size)
# Display the reconstructed volume
plt.imshow(reconstruction[:, :, 256], cmap='gray')
plt.show()
```
请注意,这是一个简单的示例,实际上FDK算法实现锥束CT重建涉及到许多细节和优化,需要根据具体的应用场景进行调整和改进。
阅读全文