(train_images, train_labels), (test_images, test_labels) = datasets.fashion_mnist.load_data() f = plt.figure(figsize=(12, 7)) f.suptitle('Label Counts for a Sample of Clients') client_data = collections.OrderedDict() for i in range(6): client_data[f'client_{i}'] = ( train_images[i*1000:(i+1)1000], train_labels[i1000:(i+1)*1000]) plot_data = collections.defaultdict(list) for example in client_data[f'client_{i}']: label = example[0].numpy() #images, labels = example[] #label = labels.numpy() plot_data[label].append(label) for i in range(6): plt.subplot(2, 3, i+1) plt.title('Client {}'.format(i)) for j in range(10): plt.hist( plot_data[j], density=False, bins=[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])这段代码中为什么出现'numpy.ndarray' object has no attribute 'numpy'错误
时间: 2023-06-08 07:07:03 浏览: 78
这段代码是用Python编写的,目的是从datasets中加载fashion_mnist数据集的图片及其对应的标签,并进行统计。
具体来说,该代码将训练数据集中的图片及其标签,分为6个客户端,每个客户端有1000张图片。然后,根据客户端的不同,将其图片的标签存储在一个有序字典client_data中。
最后,代码将合并所有客户端中的标签,并将其可视化。
相关问题
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()中的(train_images, train_labels)具体指的是什么?
(train_images, train_labels) 指的是 MNIST 数据集的训练数据,其中 train_images 是包含训练图像的 NumPy 数组,train_labels 是包含训练图像对应标签的 NumPy 数组。训练图像共有 60000 张,每张图像大小为 28x28 像素,标签为 0-9 的整数。
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()修改该代码更换为从我的路径中读取,地址为E:\date\mnist.npz
好的,根据您的需求,我可以给您提供如下修改后的代码:
```python
import os
import csv
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Flatten, Conv2D, MaxPooling2D
# 定义数据集路径
data_path = 'E:/date/mnist.npz'
# 定义权重文件路径
weights_path = 'E:/weight.csv'
# 定义输出目录路径
output_path = 'E:/output'
# 加载数据集
with np.load(data_path) as data:
train_images = data['x_train']
train_labels = data['y_train']
test_images = data['x_test']
test_labels = data['y_test']
# 数据预处理
train_images = train_images.reshape((60000, 28, 28, 1))
train_images = train_images / 255.0
test_images = test_images.reshape((10000, 28, 28, 1))
test_images = test_images / 255.0
train_labels = tf.keras.utils.to_categorical(train_labels)
test_labels = tf.keras.utils.to_categorical(test_labels)
# 定义卷积神经网络模型
model = Sequential([
Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
MaxPooling2D((2, 2)),
Conv2D(64, (3, 3), activation='relu'),
Flatten(),
Dense(64, activation='relu'),
Dense(10, activation='softmax')
])
# 加载权重
weights = csv_to_weights(weights_path)
# 将权重赋值给卷积神经网络模型
model.set_weights([weights])
# 编译模型
model.compile(optimizer='adam',
loss='categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
history = model.fit(train_images, train_labels, epochs=5, validation_data=(test_images, test_labels))
# 保存模型
model.save(os.path.join(output_path, 'model.h5'))
# 输出最终识别率
test_loss, test_acc = model.evaluate(test_images, test_labels)
print('Test accuracy:', test_acc)
```
代码中直接从 `mnist.npz` 文件中加载数据集,然后进行预处理。
阅读全文