soft dtw用代码写出
时间: 2023-05-26 19:05:01 浏览: 239
以下是Python实现的soft dtw代码:
```python
import numpy as np
from scipy.spatial.distance import euclidean
def soft_dtw(x, y, gamma):
# 计算距离矩阵
D = np.zeros((len(x), len(y)))
for i in range(len(x)):
for j in range(len(y)):
D[i, j] = euclidean(x[i], y[j])
# 初始化cost矩阵和accumulator矩阵
M = np.zeros((len(x)+1, len(y)+1))
R = np.ones((len(x)+1, len(y)+1, 2)) * np.inf
R[0, 0] = 0
# 计算cost矩阵
for i in range(1, len(x)+1):
for j in range(1, len(y)+1):
diagonal = R[i-1, j-1]
vertical = R[i-1, j]
horizontal = R[i, j-1]
r_min = np.argmin([diagonal, vertical, horizontal])
if r_min == 0:
r = diagonal
elif r_min == 1:
r = vertical
else:
r = horizontal
R[i, j, 0] = i-1+r_min
R[i, j, 1] = j-1+r_min
M[i, j] = D[i-1, j-1] + r
# 软对角惩罚
if abs(i-j) > gamma:
M[i, j] += np.inf
# 更新accumulator矩阵
s = (M[i-1, j] - M[i, j],
M[i, j-1] - M[i, j])
R[i, j, :] += np.array(s)
return M[-1, -1]
```
其中x和y为两个时间序列,每个时间点上的数值是一个向量。gamma是软对角惩罚的超参数。函数返回x和y之间的soft DTW距离。
阅读全文