163/32768*y(x) + 19/262144*diff(y(x), x) + diff(y(x), x, x) == 30603/281474976710656*x,已知y(0)=0,y’(0)=0,怎么求解这个常微分方程
时间: 2023-11-26 12:04:23 浏览: 55
可以使用MATLAB的dsolve函数求解这个常微分方程。具体步骤如下:
1. 定义符号变量和常数:
```
syms y(x)
C1 = sym('C1');
C2 = sym('C2');
```
2. 定义微分方程和初始条件:
```
eqn = 163/32768*y + 19/262144*diff(y,x) + diff(y,x,2) == 30603/281474976710656*x;
cond = [y(0) == 0, diff(y)(0) == 0];
```
3. 求解微分方程:
```
ySol(x) = dsolve(eqn, cond);
```
4. 将常数C1和C2用初始条件解出来:
```
C = solve([ySol(0)==0, subs(diff(ySol), x, 0)==0], [C1, C2]);
```
5. 将常数代入通解中,得到特解:
```
ySol(x) = subs(ySol, [C1, C2], [C.C1, C.C2]);
```
完整代码如下:
```
syms y(x)
C1 = sym('C1');
C2 = sym('C2');
eqn = 163/32768*y + 19/262144*diff(y,x) + diff(y,x,2) == 30603/281474976710656*x;
cond = [y(0) == 0, diff(y)(0) == 0];
ySol(x) = dsolve(eqn, cond);
C = solve([ySol(0)==0, subs(diff(ySol), x, 0)==0], [C1, C2]);
ySol(x) = subs(ySol, [C1, C2], [C.C1, C.C2]);
```
最终得到的特解为ySol(x)。
阅读全文