python代码实现获取yolov7-seg的掩码区域,并在掩码区域内进行角点检测
时间: 2024-04-13 14:31:02 浏览: 132
你可以使用YOLOv7-SEG模型来获取掩码区域,并使用角点检测算法在该区域内进行角点检测。下面是一个示例代码,演示了如何使用YOLOv7-SEG模型获取掩码区域并在该区域内进行角点检测。
```python
import cv2
import numpy as np
# 导入YOLOv7-SEG模型和角点检测算法的代码
# 加载YOLOv7-SEG模型
net = cv2.dnn.readNetFromDarknet('yolov7-seg.cfg', 'yolov7-seg.weights')
# 加载角点检测算法模型(例如:Harris角点检测)
corner_detector = cv2.cornerHarris
# 读取图像
image = cv2.imread('image.jpg')
# 对图像进行目标检测
blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
outputs = net.forward(output_layers)
# 解析输出并获取掩码区域
class_ids = []
confidences = []
masks = []
for output in outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5 and class_id == 0: # 假设类别0为目标类别,且置信度大于0.5
center_x = int(detection[0] * image.shape[1])
center_y = int(detection[1] * image.shape[0])
width = int(detection[2] * image.shape[1])
height = int(detection[3] * image.shape[0])
left = int(center_x - width / 2)
top = int(center_y - height / 2)
class_ids.append(class_id)
confidences.append(float(confidence))
masks.append((left, top, width, height))
# 在掩码区域内进行角点检测
for mask in masks:
left, top, width, height = mask
roi = image[top:top+height, left:left+width]
gray_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
gray_roi = np.float32(gray_roi)
corners = corner_detector(gray_roi, 2, 3, 0.04)
corners = cv2.dilate(corners, None)
roi[corners > 0.01 * corners.max()] = [0, 0, 255] # 将角点标记为红色
# 显示结果
cv2.imshow('Result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
请注意,上述代码只是一个示例,用于演示如何使用YOLOv7-SEG模型获取掩码区域并在该区域内进行角点检测。你需要根据实际情况进行适当的修改和调整。
阅读全文