gamma = 2 / (1 + math.exp(-10 * (i) / (self.iteration))) - 1 损失函数 loss = cls_loss + gamma /10 * lsd_loss,学习率由0.1降低为0.01,是否会使cls_loss和 lsd_loss的梯度下降产生影响
时间: 2024-04-16 21:25:42 浏览: 85
学习率的改变会对梯度下降产生影响。当学习率从0.1降低到0.01时,梯度下降的步长会减小,因此更新参数的幅度也会减小。这可能导致梯度下降的过程变慢,需要更多的迭代才能收敛到最优解。
对于损失函数中 cls_loss 和 lsd_loss 的梯度下降,学习率的改变会影响它们的更新步长。较小的学习率可以减小参数更新的幅度,可能需要更多的迭代才能达到最优解。因此,学习率从0.1降低到0.01可能会导致 cls_loss 和 lsd_loss 的梯度下降变慢。
需要注意的是,具体影响取决于数据和模型的特性,因此可能需要进行实验来确定最佳的学习率和其他超参数设置。
相关问题
class FocalLoss(nn.Module): # Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5) def __init__(self, loss_fcn, gamma=1.5, alpha=0.25): super(FocalLoss, self).__init__() self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss() self.gamma = gamma self.alpha = alpha self.reduction = loss_fcn.reduction self.loss_fcn.reduction = 'none' # required to apply FL to each element def forward(self, pred, true): loss = self.loss_fcn(pred, true) # p_t = torch.exp(-loss) # loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability # TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py pred_prob = torch.sigmoid(pred) # prob from logits p_t = true * pred_prob + (1 - true) * (1 - pred_prob) alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha) modulating_factor = (1.0 - p_t) ** self.gamma loss *= alpha_factor * modulating_factor if self.reduction == 'mean': return loss.mean() elif self.reduction == 'sum': return loss.sum() else: # 'none' return loss
这个代码实现了一个 Focal Loss 损失函数,它是对二分类问题中的交叉熵损失函数的一种改进。它主要通过增加一个可调的超参数 $\gamma$,来调整难易样本的权重,从而解决类别不平衡问题。在代码中,它被实现为一个 PyTorch 模块,它的 forward 方法接受两个张量,即预测值和真实值,并返回计算出来的损失值。在实现中,它首先对传入的 loss_fcn 进行了封装,将其 reduction 属性设为 'none',然后在 forward 方法中使用封装后的 loss_fcn 计算出二分类交叉熵损失,接着使用预测值和真实值计算出概率值,根据概率值和超参数 $\gamma$ 计算出一个调制因子,最后将原始损失值乘以调制因子和一个可调的超参数 $\alpha$,从而得到最终的 Focal Loss 损失。
Focal 损失函数代码如下:def focal_loss(input_values, gamma): """Computes the focal loss""" p = torch.exp(-input_values) loss = (1 - p) ** gamma * input_values return loss.mean() class FocalLoss(nn.Module): def init(self, weight=None, gamma=0.): super(FocalLoss, self).init() assert gamma >= 0 self.gamma = gamma self.weight = weight def forward(self, input, target): return focal_loss(F.cross_entropy(input, target, reduction='none', weight=self.weight), self.gamma) LDAM损失函数代码如下:class LDAMLoss(nn.Module): def init(self, cls_num_list, max_m=0.5, weight=None, s=30): super(LDAMLoss, self).init() m_list = 1.0 / np.sqrt(np.sqrt(cls_num_list)) m_list = m_list * (max_m / np.max(m_list)) m_list = torch.cuda.FloatTensor(m_list) self.m_list = m_list assert s > 0 self.s = s self.weight = weight def forward(self, x, target): index = torch.zeros_like(x, dtype=torch.uint8) index.scatter_(1, target.data.view(-1, 1), 1) index_float = index.type(torch.cuda.FloatTensor) batch_m = torch.matmul(self.m_list[None, :], index_float.transpose(0,1)) batch_m = batch_m.view((-1, 1)) x_m = x - batch_m output = torch.where(index, x_m, x) return F.cross_entropy(self.s*output, target, weight=self.weight) Large Margin aware Focal (LMF) 损失函数是 Focal 损失函数和 LDAM损失函数加权的线性组合,帮我用pytorch代码实现LMF损失函数并在模型中使用
LMF损失函数的代码如下:
```
class LMF_Loss(nn.Module):
def __init__(self, cls_num_list, max_m=0.5, weight=None, s=30, gamma=2.0, alpha=0.25):
super(LMF_Loss, self).__init__()
self.focal_loss = FocalLoss(weight=weight, gamma=gamma)
self.ldam_loss = LDAMLoss(cls_num_list=cls_num_list, max_m=max_m, weight=weight, s=s)
self.alpha = alpha
def forward(self, x, target):
focal_loss = self.focal_loss(x, target)
ldam_loss = self.ldam_loss(x, target)
output = self.alpha * ldam_loss + (1 - self.alpha) * focal_loss
return output
```
在模型中使用时,可以将LMF_Loss作为损失函数进行指定。
例如,如果你的模型是一个分类模型,可以这样定义:
```
model = MyModel()
criterion = LMF_Loss(cls_num_list=[class0_num, class1_num, class2_num], max_m=0.5, weight=class_weights, s=30, gamma=2.0, alpha=0.25)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
for epoch in range(num_epochs):
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
```
其中,`cls_num_list`是一个列表,包含每个类别的样本数量,`max_m`是LDAM损失函数中的超参数,`weight`是样本权重,`s`是LDAM损失函数中的超参数,`gamma`是Focal损失函数中的超参数,`alpha`是LMF损失函数中的超参数,控制两个损失函数的加权。
阅读全文