如果原始图片是用CV2打开的能否用image.save

时间: 2024-03-25 07:39:08 浏览: 114
如果原始图片是用 OpenCV(cv2) 打开的,你需要将其转换为 PIL.Image 格式后才能使用 `image.save()` 方法保存图片。可以使用以下代码将 OpenCV 格式的图片转换为 PIL.Image 格式: ``` import cv2 from PIL import Image # 读取 OpenCV 格式的图片 img_cv2 = cv2.imread('your_image_path') # 将 OpenCV 格式的图片转换为 PIL.Image 格式 img_pil = Image.fromarray(cv2.cvtColor(img_cv2, cv2.COLOR_BGR2RGB)) # 在指定路径中保存图片 img_pil.save('your_save_path') ``` 其中,`your_image_path` 是原始图片的路径,`your_save_path` 是要保存图片的路径。如果原始图片不是 RGB 格式,你需要根据实际情况调整 `cv2.cvtColor()` 方法中的参数。
相关问题

def main(): src_dir='./data/' save_dir = './data/train' src_dir_test='./data/test' save_dir_test = './data/test' filepaths = glob.glob(src_dir + '/*.jpg') filepaths_test = glob.glob(src_dir_test + '/*.jpg') def sortKeyFunc(s): return int(os.path.basename(s)[:-4]) filepaths_test.sort(key=sortKeyFunc) filepaths.sort(key=sortKeyFunc) print("[*] Reading train files...") if not os.path.exists(save_dir): os.mkdir(save_dir) os.mkdir(save_dir_test) os.mkdir('./data/train/noisy') os.mkdir('./data/train/original') os.mkdir('./data/test/noisy') os.mkdir('./data/test/original') print("[*] Applying noise...") sig = np.linspace(0,50,len(filepaths)) np.random.shuffle(sig) sig_test = np.linspace(0,50,len(filepaths_test)) np.random.shuffle(sig_test) for i in xrange(len(filepaths)): image = cv2.imread(filepaths[i]) image = cv2.resize(image,(180,180), interpolation = cv2.INTER_CUBIC) row,col,ch = image.shape mean = 0 sigma = sig[i] gauss = np.random.normal(mean,sigma,(row,col,ch)) gauss = gauss.reshape(row,col,ch) noisy = image + gauss noisy = np.clip(noisy, 0, 255) noisy = noisy.astype('uint8') cv2.imwrite(os.path.join(save_dir, "noisy/%04d.png" %i), noisy) cv2.imwrite(os.path.join(save_dir, "original/%04d.png" %i), image) for i in xrange(len(filepaths_test)): image = cv2.imread(filepaths_test[i]) image = cv2.resize(image,(180,180), interpolation = cv2.INTER_CUBIC) row,col,ch = image.shape mean = 0 sigma = sig[i] gauss = np.random.normal(mean,sigma,(row,col,ch)) gauss = gauss.reshape(row,col,ch) noisy = image + gauss noisy = np.clip(noisy, 0, 255) noisy = noisy.astype('uint8') cv2.imwrite(os.path.join(save_dir_test, "noisy/%d.png" %i), noisy) cv2.imwrite(os.path.join(save_dir_test, "original/%d.png" %i), image) print("[*] Noisy and original images saved") if __name__ == "__main__": main()

这段代码是一个图像处理脚本,用于生成加噪声的训练数据和测试数据。具体实现过程如下: 1. 定义了一些变量,包括源文件夹路径、保存文件夹路径等。 2. 使用glob库读取源文件夹中所有的.jpg文件,并将它们按文件名从小到大排序。 3. 创建保存文件夹及其子文件夹。 4. 对每张训练图像进行加噪声处理,使用高斯噪声模拟真实场景中的噪声。加噪声程度通过sig数组随机生成,将加噪声后的图像保存到noisy子文件夹中,原始图像保存到original子文件夹中。 5. 对每张测试图像进行同样的操作,将加噪声后的图像保存到test/noisy子文件夹中,原始图像保存到test/original子文件夹中。 6. 最后输出提示信息。 需要注意的是,这段代码使用了OpenCV库对图像进行处理,需要先安装OpenCV库。另外,这段代码中的变量命名比较规范,代码结构清晰,易于阅读和理解。

open.cvsharp4 Mat.SaveImage 透明背景

`Open.CvSharp4`是一个用于.NET平台的OpenCV库,它提供了一个方便的`Mat.SaveImage`方法,可以将矩阵类型的图像保存到文件。如果你想要保存的图片有透明背景,通常会涉及到处理Alpha通道或者RGBA颜色模式。 当你需要保存带透明度的图像时,你需要确保你的`Mat`对象包含了Alpha通道信息或者是使用RGBA而非BGR格式。对于OpenCV来说,你可以这样做: 1. **使用Alpha通道**:如果原始图像就有透明度信息,例如PNG格式,那么直接保存即可,因为OpenCV会保留Alpha通道。 ```csharp Mat imgWithAlpha; // ... (加载或创建带有Alpha通道的img) imgWithAlpha.SaveImage("output.png"); ``` 2. **转换为RGBA**:如果你的图像只有RGB数据,需要先将其转换为包含Alpha通道的格式,如通过`CvtColor`函数加上透明度。 ```csharp Mat bgrImg; // ... (加载或创建BGR图像) Mat rgbaImg = new Mat(bgrImg.Size(), CvType.CV_8UC4); bgrImg.CopyTo(rgbaImg.colRange(0, 3)); // 把前三个通道复制到RGBA的第一个到第三个通道 Mat alphaChannel = new Mat(bgrImg.Size(), CvType.CV_8UC1); // 创建全黑的Alpha通道 alphaChannel.SetZero(); // 或者设置其他透明度值 rgbaImg.col(3) = alphaChannel; // 添加Alpha通道 rgbaImg.SaveImage("output.png"); ```
阅读全文

相关推荐

def get_Image_dim_len(png_dir: str,jpg_dir:str): png = Image.open(png_dir) png_w,png_h=png.width,png.height #若第十行报错,说明jpg图片没有对应的png图片 png_dim_len = len(np.array(png).shape) assert png_dim_len==2,"提示:存在三维掩码图" jpg=Image.open(jpg_dir) jpg = ImageOps.exif_transpose(jpg) jpg.save(jpg_dir) jpg_w,jpg_h=jpg.width,jpg.height print(jpg_w,jpg_h,png_w,png_h) assert png_w==jpg_w and png_h==jpg_h,print("提示:%s mask图与原图宽高参数不一致"%(png_dir)) """2.读取单个图像均值和方差""" def pixel_operation(image_path: str): img = cv.imread(image_path, cv.IMREAD_COLOR) means, dev = cv.meanStdDev(img) return means,dev """3.分割数据集,生成label文件""" # 原始数据集 ann上一级 data_root = './work/voc_data02' #图像地址 image_dir="./JPEGImages" # ann图像文件夹 ann_dir = "./SegmentationClass" # txt文件保存路径 split_dir = './ImageSets/Segmentation' mmengine.mkdir_or_exist(osp.join(data_root, split_dir)) png_filename_list = [osp.splitext(filename)[0] for filename in mmengine.scandir( osp.join(data_root, ann_dir), suffix='.png')] jpg_filename_list=[osp.splitext(filename)[0] for filename in mmengine.scandir( osp.join(data_root, image_dir), suffix='.jpg')] assert len(jpg_filename_list)==len(png_filename_list),"提示:原图与掩码图数量不统一" print("数量检查无误") for i in range(10): random.shuffle(jpg_filename_list) red_num=0 black_num=0 with open(osp.join(data_root, split_dir, 'trainval.txt'), 'w+') as f: length = int(len(jpg_filename_list)) for line in jpg_filename_list[:length]: pngpath=osp.join(data_root,ann_dir,line+'.bmp') jpgpath=osp.join(data_root,image_dir,line+'.bmp') get_Image_dim_len(pngpath,jpgpath) img=cv.imread(pngpath,cv.IMREAD_GRAYSCALE) red_num+=len(img)*len(img[0])-len(img[img==0]) black_num+=len(img[img==0]) f.writelines(line + '\n') value=0 train_mean,train_dev=[[0.0,0.0,0.0]],[[0.0,0.0,0.0]] with open(osp.join(data_root, split_dir, 'train.txt'), 'w+') as f: train_length = int(len(jpg_filename_list) * 7/ 10) for line in jpg_filename_list[:train_length]: jpgpath=osp.join(data_root,image_dir,line+'.bmp') mean,dev=pixel_operation(jpgpath) train_mean+=mean train_dev+=dev f.writelines(line + '\n') with open(osp.join(data_root, split_dir, 'val.txt'), 'w+') as f: for line in jpg_filename_list[train_length:]: jpgpath=osp.join(data_root,image_dir,line+'.bmp') mean,dev=pixel_operation(jpgpath) train_mean+=mean train_dev+=dev f.writelines(line + '\n') 帮我把这段代码改成bmp图像可以制作数据集的代码

'''' Training Multiple Faces stored on a DataBase: ==> Each face should have a unique numeric integer ID as 1, 2, 3, etc ==> LBPH computed model will be saved on trainer/ directory. (if it does not exist, pls create one) ==> for using PIL, install pillow library with "pip install pillow" Based on original code by Anirban Kar: https://github.com/thecodacus/Face-Recognition Developed by Marcelo Rovai - MJRoBot.org @ 21Feb18 ''' import cv2 import numpy as np from PIL import Image import os # Path for face image database path = 'dataset' recognizer = cv2.face.LBPHFaceRecognizer_create() detector = cv2.CascadeClassifier("haarcascade_frontalface_default.xml"); # function to get the images and label data def getImagesAndLabels(path): imagePaths = [os.path.join(path,f) for f in os.listdir(path)] faceSamples=[] ids = [] for imagePath in imagePaths: PIL_img = Image.open(imagePath).convert('L') # convert it to grayscale img_numpy = np.array(PIL_img,'uint8') id = int(os.path.split(imagePath)[-1].split(".")[1]) faces = detector.detectMultiScale(img_numpy) for (x,y,w,h) in faces: faceSamples.append(img_numpy[y:y+h,x:x+w]) ids.append(id) return faceSamples,ids print ("\n [INFO] Training faces. It will take a few seconds. Wait ...") faces,ids = getImagesAndLabels(path) recognizer.train(faces, np.array(ids)) # Save the model into trainer/trainer.yml recognizer.write('trainer/trainer.yml') # recognizer.save() worked on Mac, but not on Pi # Print the numer of faces trained and end program print("\n [INFO] {0} faces trained. Exiting Program".format(len(np.unique(ids)))) 翻译各语句

最新推荐

recommend-type

解决python cv2.imread 读取中文路径的图片返回为None的问题

在Python编程中,使用OpenCV库(cv2)读取图片是常见的操作,但当图片路径包含中文字符时,可能会遇到cv2.imread返回None的问题。这是因为OpenCV在某些版本或配置下可能不支持处理非ASCII编码的路径。本文将详细探讨...
recommend-type

python利用蒙版抠图(使用PIL.Image和cv2)输出透明背景图

- 使用`cv2.add`将原始图像与翻转的蒙版相加,保留蒙版中的白色部分。 - 将结果转换回PIL格式,使用`__transparent_back`方法将白色背景替换为透明。 - 最后,保存图像到指定路径。 6. **注意事项**: - 在处理...
recommend-type

使用npy转image图像并保存的实例

例如,使用`cv2.resize()`可以改变图像的大小: ```python resized_img = cv2.resize(img, (new_width, new_height)) ``` 4. **数据集划分**: 在机器学习项目中,通常需要将数据集划分为训练集和测试集。这...
recommend-type

Python图像识别示例及代码,3不不同级别的代码示例,详细

Python图像识别示例及代码,3不不同级别的代码示例,详细。 1.scikit - image库进行简单的图像边缘检测 2.使用TensorFlow和Keras进行简单的图像分类(以 MNIST 数据集为例) 3.使用YOLOv5进行目标检测
recommend-type

Fortify代码扫描工具完整用户指南与安装手册

Fortify是惠普公司推出的一套应用安全测试工具,广泛应用于软件开发生命周期中,以确保软件的安全性。从给定的文件信息中,我们可以了解到相关的文档涉及Fortify的不同模块和版本5.2的使用说明。下面将对这些文档中包含的知识点进行详细说明: 1. Fortify Audit Workbench User Guide(审计工作台用户指南) 这份用户指南将会对Fortify Audit Workbench模块提供详细介绍,这是Fortify产品中用于分析静态扫描结果的界面。文档可能会包括如何使用工作台进行项目创建、任务管理、报告生成以及结果解读等方面的知识。同时,用户指南也可能会解释如何使用Fortify提供的工具来识别和管理安全风险,包括软件中可能存在的各种漏洞类型。 2. Fortify SCA Installation Guide(软件组合分析安装指南) 软件组合分析(SCA)模块是Fortify用以识别和管理开源组件安全风险的工具。安装指南将涉及详细的安装步骤、系统要求、配置以及故障排除等内容。它可能会强调对于不同操作系统和应用程序的支持情况,以及在安装过程中可能遇到的常见问题和解决方案。 3. Fortify SCA System Requirements(软件组合分析系统需求) 该文档聚焦于列出运行Fortify SCA所需的硬件和软件最低配置要求。这包括CPU、内存、硬盘空间以及操作系统等参数。了解这些需求对于确保Fortify SCA能够正常运行以及在不同的部署环境中都能提供稳定的性能至关重要。 4. Fortify SCA User Guide(软件组合分析用户指南) 用户指南将指导用户如何使用SCA模块来扫描应用程序中的开源代码组件,识别已知漏洞和许可证风险。指南中可能含有操作界面的介绍、扫描策略的设置、结果解读方法、漏洞管理流程等关键知识点。 5. Fortify SCA Utilities Guide(软件组合分析工具指南) 此文档可能详细描述了SCA模块的附加功能和辅助工具,包括命令行工具的使用方法、报告的格式化和定制选项,以及与持续集成工具的集成方法等。 6. Fortify Secure Coding Package for Visual Studio User Guide(Visual Studio安全编码包用户指南) Visual Studio安全编码包是Fortify提供给Visual Studio开发者的插件,它能够在编码阶段就帮助开发者发现和修复代码中的安全问题。这份指南将详细说明如何在Visual Studio中集成和使用这个插件,以及如何通过它的各种特性提升代码质量和安全性。 7. IntroToSCAS(软件组合分析入门) 这本入门指南可能为初学者提供一个关于SCA概念的基础理解,包括其重要性、工作原理以及如何应对软件中依赖的开源组件所带来的安全风险。 这些文档涵盖了使用Fortify进行代码安全扫描的多个方面,从安装配置到使用指导,再到深入的漏洞管理。每一个文档都为用户提供了在软件开发生命周期中提高软件安全性所需的关键知识和工具。对于IT专业人士来说,熟悉这些文档的内容将有助于他们更好地在软件开发过程中实施安全措施,以防范潜在的安全威胁。 由于文档内容的丰富性,以上知识点仅是一部分概览。对于每个模块的具体使用方法、最佳实践、案例研究以及高级功能配置等内容,都需要在阅读官方文档后才能全面掌握。IT行业中的安全专家、开发人员、测试工程师等都应根据自己的职责范围来深入学习和应用这些文档中的知识。
recommend-type

【VS2010-MFC实战秘籍】:串口数据波形显示软件入门及优化全解析

# 摘要 本文系统地探讨了基于MFC的串口数据波形显示软件的开发过程,涵盖了从理论基础到实践应用的各个方面。首先介绍了MFC串口通信的理论知识和实际操作,包括串口工作原理、参数配置及使用MFC串口类进行数据收发。随后,文章深入讲解了波形显示软件的界面设计、实现及优化策略,强调了用户
recommend-type

freesurfer完成处理后,如何批量提取每个被试aseg.stats的某个脑区的体积(volume)到一个table中,每个被试的数据是单独的一行

在Freesurfer的处理流程结束后,如果你想要从每个被试的aseg.stats文件中提取特定脑区的体积并整理成表格,你可以按照以下步骤操作: 1. **定位aseg.stats文件**:首先需要找到每个被试的aseg.stats文件,通常它们位于`fsaverage/surf/lh/label`或`rh/label`目录下,对应于左右半球,名称包含被试ID。 2. **解析数据**:打开`aseg.stats`文件,这是一个文本文件,包含了各个脑区域的信息,包括名称(比如`lh.Cuneus.volume`)和值。使用编程语言如Python或Matlab可以方便地读取和解析这个文件。
recommend-type

汽车共享使用说明书的开发与应用

根据提供的文件信息,我们可以提炼出以下知识点: 1. 文件标题为“carshare-manual”,意味着这份文件是一份关于汽车共享服务的手册。汽车共享服务是指通过互联网平台,允许多个用户共享同一辆汽车使用权的模式。这种服务一般包括了车辆的定位、预约、支付等一系列功能,目的是为了减少个人拥有私家车的数量,提倡环保出行,并且能够提高车辆的利用率。 2. 描述中提到的“Descripción 在汽车上使用说明书的共享”,表明该手册是一份共享使用说明,用于指导用户如何使用汽车共享服务。这可能涵盖了如何注册、如何预约车辆、如何解锁和启动车辆、如何支付费用等用户关心的操作流程。 3. 进一步的描述提到了“通用汽车股份公司的股份公司 手册段CarShare 埃斯特上课联合国PROYECTO desarrollado恩11.0.4版本。”,这部分信息说明了这份手册属于通用汽车公司(可能是指通用汽车股份有限公司GM)的CarShare项目。CarShare项目在11.0.4版本中被开发或更新。在IT行业中,版本号通常表示软件的迭代,其中每个数字代表不同的更新或修复的内容。例如,“11.0.4”可能意味着这是11版本的第4次更新。 4. 标签中出现了“TypeScript”,这表明在开发该手册对应的CarShare项目时使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了类型系统和一些其他特性,使得开发大型的、可维护的应用程序变得更加容易。TypeScript编译到JavaScript,因此它是JavaScript的一个严格的语法子集。通过使用TypeScript,开发者可以利用面向对象编程的特性,如接口、泛型、类、模块等。 5. 压缩包子文件的文件名称列表中只有一个文件名“carshare-manual-master”,这表明原始的CarShare项目文件可能被压缩打包成了一个压缩文件,并且该压缩文件的名称为“carshare-manual-master”。在IT项目管理中,“master”通常指的是主分支,这个分支通常用于生产环境或是软件的稳定发布版本。这说明“carshare-manual-master”可能是CarShare项目的主分支备份,包含了手册的最新版本。 综合以上信息,我们可以得出以下结论:这份“carshare-manual”是一份由通用汽车公司开发的汽车共享服务使用手册,该服务是CarShare项目的一部分,项目开发使用了TypeScript语言,并且与之相关的一个主分支备份文件被命名为“carshare-manual-master”。用户可以通过这份手册了解如何使用CarShare服务,包括注册、预约、使用和支付等环节,以便更好地享受汽车共享带来的便捷和环保出行理念。
recommend-type

BD3201电路维修全攻略:从入门到高级技巧的必备指南

# 摘要 本文系统地介绍了BD3201电路的维修流程和理论知识,旨在为相关技术人员提供全面的维修指导。首先概述了BD3201电路维修的基本概念,接着深入探讨了电路的基础理论,包括电路工作原理、电路图解读及故障分析基础。第三章详细描述了维修实践操作,涵盖了从准备工作到常见故障诊断与修复,以及性能测试与优化的完整过程。第四章提出了BD3201电路高级维修技巧,强调了微电子组件的焊接拆卸技术及高
recommend-type

如何在前端使用百度地图同时添加多个标记点?

在前端使用百度地图(Baidu Map API)添加多个标记点,你可以按照以下步骤操作: 1. 首先,你需要在项目中引入百度地图的JavaScript库。可以使用CDN或者下载到本地然后通过`<script>`标签引入。 ```html <script src="https://api.map.baidu.com/api?v=4.4&ak=your_api_key"></script> ``` 记得替换`your_api_key`为你从百度地图开发者平台获取的实际API密钥。 2. 创建地图实例并设置中心点: ```javascript var map = new BMap.Map("