请写一段代码使用TCN根据风速、风向、温度、湿度、气压、空气密度数据预测风电场输出功率
时间: 2023-09-30 22:03:43 浏览: 72
风电功率预测
4星 · 用户满意度95%
请参考以下代码:
```python
import torch
from torch import nn
from torch.nn.utils import weight_norm
class TemporalBlock(nn.Module):
def __init__(self, input_size, output_size, kernel_size, stride, dilation, padding):
super(TemporalBlock, self).__init__()
self.conv1 = weight_norm(nn.Conv1d(input_size, output_size, kernel_size,
stride=stride, padding=padding, dilation=dilation))
self.relu1 = nn.ReLU()
self.dropout1 = nn.Dropout(0.2)
self.conv2 = weight_norm(nn.Conv1d(output_size, output_size, kernel_size,
stride=stride, padding=padding, dilation=dilation))
self.relu2 = nn.ReLU()
self.dropout2 = nn.Dropout(0.2)
self.net = nn.Sequential(self.conv1, self.relu1, self.dropout1,
self.conv2, self.relu2, self.dropout2)
self.downsample = nn.Conv1d(input_size, output_size, 1) if input_size != output_size else None
self.relu = nn.ReLU()
def forward(self, x):
y = self.net(x)
if self.downsample is not None:
x = self.downsample(x)
return self.relu(x + y)
class TemporalConvNet(nn.Module):
def __init__(self, input_size, hidden_size, kernel_size=2, dropout=0.2):
super(TemporalConvNet, self).__init__()
layers = []
dilation_size = 1
for i in range(len(hidden_size)):
dilation = dilation_size
if i == len(hidden_size) - 1:
kernel_size = input_size + i + 1
stride = 1
padding = int((kernel_size - 1) * dilation / 2)
else:
kernel_size = 2
stride = 1
padding = 1
layers += [TemporalBlock(input_size, hidden_size[i], kernel_size,
stride=stride, dilation=dilation, padding=padding)]
dilation_size *= 2
self.network = nn.Sequential(*layers)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = x.permute(0, 2, 1)
x = self.network(x)
x = x.permute(0, 2, 1)
x = self.dropout(x)
return x
class TCN(nn.Module):
def __init__(self, input_size, output_size, hidden_size, kernel_size, dropout):
super(TCN, self).__init__()
self.tcn = TemporalConvNet(input_size, hidden_size, kernel_size, dropout=dropout)
self.linear = nn.Linear(hidden_size[-1], output_size)
def forward(self, x):
output = self.tcn(x)
output = self.linear(output[:, -1, :])
return output
input_size = 6 # 风速、风向、温度、湿度、气压、空气密度数据
output_size = 1 # 风电场输出功率
hidden_size = [64, 128, 256] # 隐藏层神经元数量
kernel_size = 2
dropout = 0.2
model = TCN(input_size, output_size, hidden_size, kernel_size, dropout)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
# train and validate function
def train(train_loader):
model.train()
train_loss = 0.0
for i, (data, labels) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
train_loss += loss.item() / len(train_loader)
return train_loss
def validate(val_loader):
model.eval()
val_loss = 0.0
for i, (data, labels) in enumerate(val_loader):
output = model(data)
loss = criterion(output, labels)
val_loss += loss.item() / len(val_loader)
return val_loss
# set up data
train_data = ...
train_labels = ...
val_data = ...
val_labels = ...
train_dataset = torch.utils.data.TensorDataset(train_data, train_labels)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
val_dataset = torch.utils.data.TensorDataset(val_data, val_labels)
val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=64, shuffle=True)
# train and validate
for epoch in range(10):
train_loss = train(train_loader)
val_loss = validate(val_loader)
print('Epoch [{}/{}], train_loss: {:.4f}, val_loss: {:.4f}'
.format(epoch + 1, 10, train_loss, val_loss))
# make prediction
test_data = ...
model.eval()
prediction = model(test_data)
print(prediction)
```
注:由于没有提供具体的数据集,以上代码仅作为参考,请根据实际数据集进行调整。
阅读全文