#include <iostream>#include <vector>#include <cmath>using namespace std;// 定义一个结构体表示空间点struct Point { double x; double y; double z;};// 计算两个空间点之间的欧几里得距离double distance(Point p1, Point p2) { double dx = p1.x - p2.x; double dy = p1.y - p2.y; double dz = p1.z - p2.z; return sqrt(dx*dx + dy*dy + dz*dz);}// 实现克里金插值double krigingInterpolation(Point target, vector<Point>& points, vector<double>& values, int k, double a, double c) { int n = points.size(); vector<double> distances(n); // 存储目标点与所有已知点之间的距离 for (int i = 0; i < n; i++) { distances[i] = distance(target, points[i]); } // 计算目标点与所有已知点之间的协方差 vector<double> covariances(n); for (int i = 0; i < n; i++) { double sum = 0; for (int j = 0; j < n; j++) { double d = distance(points[i], points[j]); sum += pow((values[i] - values[j]), 2) / (2 * k*k); } covariances[i] = exp(-sum / n); } // 计算权重 vector<double> weights(n); double sum = 0; for (int i = 0; i < n; i++) { weights[i] = pow(distances[i], -a) * covariances[i]; sum += weights[i]; } for (int i = 0; i < n; i++) { weights[i] /= sum; } // 计算插值结果 double result = 0; for (int i = 0; i < n; i++) { result += weights[i] * values[i]; } return result;}int main() { // 定义已知点和对应的值 vector<Point> points = {{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {1, 0, 0}, {1, 1, 1}}; vector<double> values = {1, 2, 3, 4, 5}; // 定义目标点 Point target = {0.5, 0.5, 0.5}; // 使用克里金插值进行估计 double result = krigingInterpolation(target, points, values, 3, 2.0, 1.0); cout << "The estimated value at (" << target.x << ", " << target.y << ", " << target.z << ") is " << result << endl; return 0;}
时间: 2024-04-04 14:35:29 浏览: 152
使用include <iostream>时一定要加using namespace std
这是一个简单的C++代码示例,实现了克里金插值算法。在这个示例中,我们使用一个结构体来表示三维空间中的点,并实现了计算两个点之间欧几里得距离的函数。然后,我们使用克里金插值算法对一个目标点进行估计,其中已知一些离目标点较近的点和它们的值。在克里金插值中,我们需要指定一些参数,如k、a和c,它们影响插值结果的精度和平滑度。最后,我们输出估计值。
阅读全文