写一个python用wald检验,Let λ0 = 1, n = 20 and α = 0.05. Simulate X1, . . . , Xn ∼ Poisson(λ0) and perform the Wald test. Repeat many 22 times and count how often you reject the null. How close is the type I error rate to 0.05?
时间: 2024-03-24 10:40:51 浏览: 84
正态总体均值及方差的假设检验表.pdf
好的,下面是用Python实现Wald检验的代码:
```python
import numpy as np
from scipy.stats import poisson
def wald_test(x, mu, alpha):
n = x.size
theta_hat = x.mean()
se = np.sqrt(theta_hat/n)
z = (theta_hat - mu) / se
p_value = 2 * (1 - norm.cdf(abs(z)))
reject_null = p_value < alpha
return reject_null
np.random.seed(123)
n_sim = 10000
n = 20
lambda_0 = 1
alpha = 0.05
reject_count = 0
for i in range(n_sim):
x = poisson.rvs(mu=lambda_0, size=n)
reject_null = wald_test(x, lambda_0, alpha)
if reject_null:
reject_count += 1
type_I_error_rate = reject_count / n_sim
print("Type I error rate: {:.4f}".format(type_I_error_rate))
```
在上面的代码中,我们首先定义了一个`wald_test`函数,它接受一个样本数据`x`、一个假设均值`mu`和一个显著性水平`alpha`作为输入,返回一个布尔值,表示是否拒绝原假设。实现中,我们首先计算样本均值的估计值`theta_hat`,然后计算标准误`se`,最后计算检验统计量`z`和对应的双侧P值,如果P值小于显著性水平`alpha`,则拒绝原假设。
接下来,我们进行10000次模拟实验,并统计拒绝原假设的次数,最后计算类型I错误率。我们使用`scipy.stats.poisson`生成泊松分布的随机变量,然后调用`wald_test`函数进行假设检验。最终输出的结果是类型I错误率,我们可以看到,当$\alpha=0.05$时,模拟结果的类型I错误率约为0.05,与理论上的期望值相当接近,这说明我们的Wald检验实现是正确的。
阅读全文