np.sort函数
时间: 2023-07-19 09:17:50 浏览: 159
np.sort是numpy库中的一个函数,用于对数组进行排序。它可以按行或列对数组进行排序,并可以指定升序或降序排序。具体用法如下:
```python
import numpy as np
# 对一维数组进行排序
arr = np.array([3, 2, 1])
sorted_arr = np.sort(arr)
print(sorted_arr) # [1 2 3]
# 对二维数组按行排序
arr = np.array([[3, 2, 1], [6, 5, 4]])
sorted_arr = np.sort(arr, axis=1)
print(sorted_arr) # [[1 2 3] [4 5 6]]
# 对二维数组按列排序
arr = np.array([[3, 2, 1], [6, 5, 4]])
sorted_arr = np.sort(arr, axis=0)
print(sorted_arr) # [[3 2 1] [6 5 4]]
# 对数组进行降序排序
arr = np.array([3, 2, 1])
sorted_arr = np.sort(arr)[::-1] # 倒序
print(sorted_arr) # [3 2 1]
```
需要注意的是,np.sort函数返回的是排序后的数组,而不是在原数组上进行排序。如果想在原数组上进行排序,可以使用数组自带的sort方法。
相关问题
threshold_r = np.sort(np.abs(coeffs_r[1].ravel()))[::-1][int(compress_ratio * len(coeffs_r[1].ravel()))] 17 threshold_g = np.sort(np.abs(coeffs_g[1].ravel()))[::-1][int(compress_ratio * len(coeffs_g[1].ravel()))] 18 threshold_b = np.sort(np.abs(coeffs_b[1].ravel()))[::-1][int(compress_ratio * len(coeffs_b[1].ravel()))] AttributeError: 'tuple' object has no attribute 'ravel'
根据你提供的错误信息,提示出现了 AttributeError: 'tuple' object has no attribute 'ravel',说明 coeffs_r[1]、coeffs_g[1] 和 coeffs_b[1] 这三个元素是元组类型,而不是数组类型。因此,无法使用 ravel 函数将它们转换为一维数组。
你可以将 coeffs_r[1]、coeffs_g[1] 和 coeffs_b[1] 转换为数组类型,然后再使用 ravel 函数将它们转换为一维数组。你可以尝试在代码中添加以下语句:
```
coeffs_r_arr = np.array(coeffs_r[1])
coeffs_g_arr = np.array(coeffs_g[1])
coeffs_b_arr = np.array(coeffs_b[1])
threshold_r = np.sort(np.abs(coeffs_r_arr.ravel()))[::-1][int(compress_ratio * len(coeffs_r_arr.ravel()))]
threshold_g = np.sort(np.abs(coeffs_g_arr.ravel()))[::-1][int(compress_ratio * len(coeffs_g_arr.ravel()))]
threshold_b = np.sort(np.abs(coeffs_b_arr.ravel()))[::-1][int(compress_ratio * len(coeffs_b_arr.ravel()))]
```
这样就可以将 coeffs_r[1]、coeffs_g[1] 和 coeffs_b[1] 转换为数组类型,并使用 ravel 函数将它们转换为一维数组,然后计算阈值。
写一个c函数复现以下代码 # 求每一列的均值 col_mean = np.mean(temp_arr, axis=0) # 每个元素减去所在列的均值 temp_arr = (temp_arr - col_mean).astype(int) n_largest = max_min_num n_smallest = max_min_num max_values = np.apply_along_axis(lambda x: np.sort(x)[-n_largest:], axis=0, arr=temp_arr) min_values = np.apply_along_axis(lambda x: np.sort(x)[:n_smallest], axis=0, arr=temp_arr) max_mean = np.mean(max_values, axis=0).astype(int) min_mean = np.abs(np.mean(min_values, axis=0)).astype(int) mean = (max_mean + min_mean) // 2
以下是复现上述代码功能的C函数:
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
void compute_mean(int rows, int cols, int temp_arr[rows][cols], int max_min_num) {
int col_mean[cols];
int i, j, k;
int n_largest = max_min_num;
int n_smallest = max_min_num;
int max_values[cols][n_largest];
int min_values[cols][n_smallest];
int max_mean[cols];
int min_mean[cols];
int mean[cols];
// 求每一列的均值
for (j = 0; j < cols; j++) {
int sum = 0;
for (i = 0; i < rows; i++) {
sum += temp_arr[i][j];
}
col_mean[j] = round(1.0 * sum / rows);
}
// 每个元素减去所在列的均值
for (i = 0; i < rows; i++) {
for (j = 0; j < cols; j++) {
temp_arr[i][j] -= col_mean[j];
}
}
// 求每列的最大值
for (j = 0; j < cols; j++) {
for (i = 0; i < rows; i++) {
int val = temp_arr[i][j];
for (k = 0; k < n_largest; k++) {
if (k == 0 || val > max_values[j][k-1]) {
max_values[j][k] = val;
break;
}
}
}
}
// 求每列的最小值
for (j = 0; j < cols; j++) {
for (i = 0; i < rows; i++) {
int val = temp_arr[i][j];
for (k = 0; k < n_smallest; k++) {
if (k == 0 || val < min_values[j][k-1]) {
min_values[j][k] = val;
break;
}
}
}
}
// 求每列最大值的均值
for (j = 0; j < cols; j++) {
int sum = 0;
for (k = 0; k < n_largest; k++) {
sum += max_values[j][k];
}
max_mean[j] = round(1.0 * sum / n_largest);
}
// 求每列最小值的均值的绝对值
for (j = 0; j < cols; j++) {
int sum = 0;
for (k = 0; k < n_smallest; k++) {
sum += min_values[j][k];
}
min_mean[j] = round(fabs(1.0 * sum / n_smallest));
}
// 求每列最大值均值和最小值均值的平均值
for (j = 0; j < cols; j++) {
mean[j] = round(0.5 * (max_mean[j] + min_mean[j]));
}
// 输出结果
printf("col_mean: ");
for (j = 0; j < cols; j++) {
printf("%d ", col_mean[j]);
}
printf("\n");
printf("max_values: ");
for (j = 0; j < cols; j++) {
printf("[ ");
for (k = 0; k < n_largest; k++) {
printf("%d ", max_values[j][k]);
}
printf("] ");
}
printf("\n");
printf("min_values: ");
for (j = 0; j < cols; j++) {
printf("[ ");
for (k = 0; k < n_smallest; k++) {
printf("%d ", min_values[j][k]);
}
printf("] ");
}
printf("\n");
printf("max_mean: ");
for (j = 0; j < cols; j++) {
printf("%d ", max_mean[j]);
}
printf("\n");
printf("min_mean: ");
for (j = 0; j < cols; j++) {
printf("%d ", min_mean[j]);
}
printf("\n");
printf("mean: ");
for (j = 0; j < cols; j++) {
printf("%d ", mean[j]);
}
printf("\n");
}
```
假设输入的数据存储在一个二维数组 `temp_arr` 中,其大小为 `rows` 行 `cols` 列。函数的第二个参数 `max_min_num` 表示求每列的最大值和最小值时,分别选取的个数。函数会依次输出 `col_mean`,`max_values`,`min_values`,`max_mean`,`min_mean` 和 `mean`,分别对应上述代码中的变量。
阅读全文