生成用PINN求解薛定谔方程的代码
时间: 2024-03-26 18:39:34 浏览: 118
以下是使用PINN求解薛定谔方程的Python代码示例:
```python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# 定义薛定谔方程
def schrodinger_eqn(x, t, psi):
# 计算波函数的二阶导数
d2_psi_dx2 = tf.gradients(tf.gradients(psi, x)[0], x)[0]
# 计算波函数的一阶导数
d_psi_dt = tf.gradients(psi, t)[0]
# 计算哈密顿量
H = -0.5 * d2_psi_dx2 + tf.sin(x) * psi
# 计算薛定谔方程
schrodinger_eqn = d_psi_dt + 1j * H
return tf.real(schrodinger_eqn), tf.imag(schrodinger_eqn)
# 定义神经网络模型
def neural_net(x, t):
with tf.variable_scope('neural_net', reuse=tf.AUTO_REUSE):
X = tf.concat([x, t], 1)
initializer = tf.variance_scaling_initializer(scale=2.0)
net = tf.layers.dense(X, 50, activation=tf.nn.relu, kernel_initializer=initializer)
net = tf.layers.dense(net, 50, activation=tf.nn.relu, kernel_initializer=initializer)
net = tf.layers.dense(net, 2, kernel_initializer=initializer)
return net
# 定义边界条件
def boundary_conditions(x, t):
# 定义初始波函数
psi0 = tf.exp(-tf.square(x - tf.constant(0.5, dtype=tf.float32)) / 0.1)
# 定义边界条件
psi_bc_left = tf.zeros_like(t)
psi_bc_right = tf.zeros_like(t)
return psi0, psi_bc_left, psi_bc_right
# 定义损失函数
def loss_function(x, t, psi):
psi0, psi_bc_left, psi_bc_right = boundary_conditions(x, t)
psi_pred = psi[:, 0:1]
schrodinger_real, schrodinger_imag = schrodinger_eqn(x, t, psi)
# 初始波函数的损失
loss_psi0 = tf.reduce_mean(tf.square(psi0 - psi_pred[0]))
# 边界条件的损失
loss_bc_left = tf.reduce_mean(tf.square(psi[:, 1:2] - psi_bc_left))
loss_bc_right = tf.reduce_mean(tf.square(psi[:, 2:3] - psi_bc_right))
# 薛定谔方程的损失
loss_schrodinger = tf.reduce_mean(tf.square(schrodinger_real) + tf.square(schrodinger_imag))
# 总损失
loss = loss_psi0 + loss_bc_left + loss_bc_right + loss_schrodinger
return loss
# 定义训练函数
def train(x, t, psi):
loss = loss_function(x, t, psi)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-3)
train_op = optimizer.minimize(loss)
return train_op, loss
# 定义测试函数
def test(x, t):
psi_pred = neural_net(x, t)
return psi_pred[:, 0:1]
if __name__ == '__main__':
# 定义训练数据
x = np.linspace(0, 1, 100)[:, None]
t = np.linspace(0, 1, 100)[:, None]
# 定义神经网络
psi = neural_net(x, t)
# 定义训练函数
train_op, loss = train(x, t, psi)
# 开始训练
sess = tf.Session()
sess.run(tf.global_variables_initializer())
num_epochs = 10000
for i in range(num_epochs):
_, loss_value = sess.run([train_op, loss])
if i % 1000 == 0:
print('Epoch: %d, Loss: %e' % (i, loss_value))
# 测试模型
psi_pred = sess.run(test(x, t))
plt.plot(x, np.square(np.abs(psi_pred)))
plt.show()
```
在上面的代码中,我们首先定义了薛定谔方程,然后定义了神经网络模型和边界条件。接下来,我们定义了损失函数和训练函数,然后使用Adam优化器进行训练。最后,我们使用训练好的模型对测试数据进行预测,并绘制出结果。
需要注意的是,PINN的训练过程需要较长时间,需要根据具体情况进行调整。此外,训练过程中可能会出现梯度爆炸或消失的问题,需要进行相应的处理。
阅读全文