LSTM+attention机制 Python代码 Pytorch框架
时间: 2023-09-25 11:16:26 浏览: 106
以下是LSTM attention机制的Python代码(使用Pytorch框架):
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class LSTMAttention(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(LSTMAttention, self).__init__()
self.hidden_dim = hidden_dim
self.lstm = nn.LSTM(input_dim, hidden_dim, bidirectional=True)
self.fc = nn.Linear(hidden_dim * 2, output_dim)
self.attention_fc = nn.Linear(hidden_dim * 2, 1)
def forward(self, x):
# Initialize hidden state and cell state
hidden_state = torch.zeros(2, x.size(0), self.hidden_dim).to(x.device)
cell_state = torch.zeros(2, x.size(0), self.hidden_dim).to(x.device)
lstm_out, _ = self.lstm(x, (hidden_state, cell_state))
# Apply attention
attention_weights = F.softmax(self.attention_fc(lstm_out), dim=1)
attention_vector = torch.sum(attention_weights * lstm_out, dim=1)
# Feed attention_vector to the fully connected layer
out = self.fc(attention_vector)
return out
```
该代码定义了一个带有attention机制的LSTM模型,输入维度为input_dim,隐层维度为hidden_dim,输出维度为output_dim。模型首先通过LSTM层对数据进行处理,然后通过注意力机制计算加权平均值,最后将得到的注意力向量馈送给全连接层以生成模型的输出。
阅读全文