def residual_block(x, filters, kernel_size, padding='same', dilation_rate=1, batch_norm=True, activation='relu'): res = conv2d_block(x, filters, kernel_size, padding, dilation_rate, batch_norm=True, activation='relu') res = conv2d_block(res, filters, kernel_size, padding, dilation_rate, batch_norm=True, activation='relu') shortcut = layers.Conv2D(filters, kernel_size=1, padding=padding, use_bias=False)(x) shortcut = layers.BatchNormalization()(shortcut) x = layers.add([shortcut, res]) return x
时间: 2024-04-02 19:34:50 浏览: 297
这段代码实现了一个残差块(residual block),它是深度学习中常用的一种模块,用于构建深度神经网络。残差块的主要目的是解决深度神经网络中的梯度消失和梯度爆炸问题,从而帮助网络更好地学习复杂的特征。
具体来说,这个残差块包括两个卷积层(使用了conv2d_block函数),每个卷积层都采用了相同的卷积核大小和扩张率,但使用了不同的输入和输出通道数。这两个卷积层都包括批量归一化和激活函数,以增加网络的稳定性和非线性能力。
残差块的核心在于它通过添加一个短路连接(shortcut connection)来跳过部分层的计算。具体来说,这个残差块在第二个卷积层的输出上添加了一个与输入x相加的操作,这个操作使得网络可以直接学习残差(即差异)而不是完整的特征表示。这样可以帮助网络更容易地学习复杂的特征,并且可以避免梯度消失和梯度爆炸问题。
相关问题
在“def conv2d_block(x, filters, kernel_size, padding='same', dilation_rate=1, batch_norm=True, activation='relu'): """ Applies Conv2D - BN - ReLU block. """ x = layers.Conv2D(filters, kernel_size, padding=padding, use_bias=False)(x) if batch_norm: x = layers.BatchNormalization()(x) if activation is not None: x = layers.Activation(activation)(x) return x”加入残差块
可以通过将该函数作为一个子模块,在输入和输出之间添加一个跳跃连接来加入残差块。具体实现方式如下:
```
def residual_block(input_tensor, filters, kernel_size, padding='same', dilation_rate=1, batch_norm=True, activation='relu'):
x = conv2d_block(input_tensor, filters, kernel_size, padding, dilation_rate, batch_norm, activation)
x = layers.add([x, input_tensor])
return x
```
在该函数中,我们首先调用 `conv2d_block` 函数来生成一个卷积 - BN - 激活块,然后通过 `layers.add` 函数将该块的输出和输入进行相加,得到最终的残差块输出。
def UNet_wiener(height, width, initial_psf, initial_K, encoding_cs=[24, 64, 128, 256, 512, 1024], center_cs=1024, decoding_cs=[512, 256, 128, 64, 24, 24], skip_connections=[True, True, True, True, True, True]): inputs = tf.keras.Input((height, width, 1)) x = inputs # Multi-Wiener deconvolutions x = WienerDeconvolution(initial_psf, initial_K)(x) skips = [] # Contracting path for c in encoding_cs: x, x_skip = encoder_block(x, c, kernel_size=3, padding='same', dilation_rate=1, pooling='average') skips.append(x_skip) skips = list(reversed(skips)) # Center x = residual_block(x, center_cs, kernel_size=3, padding='same') # Expansive path for i, c in enumerate(decoding_cs): if skip_connections[i]: x = decoder_block_resize(x, skips[i], c, kernel_size=3, padding='same', dilation_rate=1) else: x = decoder_block(x, None, c, kernel_size=3, padding='same', dilation_rate=1) # Classify x = layers.Conv2D(filters=1, kernel_size=1, use_bias=True, activation='relu')(x) outputs = tf.squeeze(x, axis=3) model = tf.keras.Model(inputs=[inputs], outputs=[outputs]) return model
这段代码看起来像是一个基于 UNet 的神经网络模型,用于图像去噪。其中包括了一个 Multi-Wiener Deconvolution 模块,用于去除图像中的模糊和噪声。模型的编码器和解码器都使用了卷积层和反卷积层,并且采用了 skip connections 技术,以帮助信息传递和提高模型性能。最后的输出是一个二维图像,经过了 squeeze 操作,去掉了 channel 维度,变成了一个灰度图像。
阅读全文