保存使用gplearn的SymbolicTransformer构造的新特征的代码
时间: 2024-05-12 13:20:27 浏览: 272
以下是使用gplearn的SymbolicTransformer构造新特征并保存的示例代码:
```python
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from gplearn.genetic import SymbolicTransformer
# 加载数据集
boston = load_boston()
X_train, X_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=0)
# 定义SymbolicTransformer
function_set = ['add', 'sub', 'mul', 'div', 'sqrt', 'log', 'abs', 'neg', 'inv', 'max', 'min']
gp = SymbolicTransformer(generations=5, population_size=1000, hall_of_fame=10,
function_set=function_set, metric='mean absolute error',
random_state=0, verbose=1)
# 拟合SymbolicTransformer并生成新特征
gp.fit(X_train, y_train)
X_train_new = gp.transform(X_train)
X_test_new = gp.transform(X_test)
# 保存新特征
import numpy as np
np.savetxt('X_train_new.csv', X_train_new, delimiter=',')
np.savetxt('X_test_new.csv', X_test_new, delimiter=',')
```
在这个示例中,我们使用了波士顿房价数据集,并使用SymbolicTransformer构造了一组新特征。我们将新特征保存到CSV文件中,以便后续的机器学习任务使用。
阅读全文