解释 self.ax2.set_xlim(self.xlim)
时间: 2024-02-19 17:01:04 浏览: 124
`set_xlim()` 是 Matplotlib 中 Axes 类的一个方法,用于设置 x 轴的数据范围。当调用 `set_xlim()` 方法时,需要传入一个包含两个元素的列表或元组,其中第一个元素是 x 轴的最小值,第二个元素是 x 轴的最大值。在这行代码中,`self.xlim` 是一个包含 x 轴最小值和最大值的元组,通过 `self.ax2.set_xlim(self.xlim)` 将 x 轴的范围设置为 `self.xlim` 中指定的范围。这样做的目的是确保 x 轴的范围与数据的实际范围一致,以便更好地展示数据。
相关问题
def draw_stats(self, vals, vals1, vals2, vals3, vals4, vals5, vals6): self.ax1 = plt.subplot(self.gs[0, 0]) self.ax1.plot(vals) self.ax1.set_xlim(self.xlim) locs = self.ax1.get_xticks() locs[0] = self.xlim[0] locs[-1] = self.xlim[1] self.ax1.set_xticks(locs) self.ax1.use_sticky_edges = False self.ax1.set_title(f'Connected Clients Ratio') self.ax2 = plt.subplot(self.gs[1, 0]) self.ax2.plot(vals1) self.ax2.set_xlim(self.xlim) self.ax2.set_xticks(locs) self.ax2.yaxis.set_major_formatter(FuncFormatter(format_bps)) self.ax2.use_sticky_edges = False self.ax2.set_title('Total Bandwidth Usage') self.ax3 = plt.subplot(self.gs[2, 0]) self.ax3.plot(vals2) self.ax3.set_xlim(self.xlim) self.ax3.set_xticks(locs) self.ax3.use_sticky_edges = False self.ax3.set_title('Bandwidth Usage Ratio in Slices (Averaged)') self.ax4 = plt.subplot(self.gs[3, 0]) self.ax4.plot(vals3) self.ax4.set_xlim(self.xlim) self.ax4.set_xticks(locs) self.ax4.use_sticky_edges = False self.ax4.set_title('Client Count Ratio per Slice') self.ax5 = plt.subplot(self.gs[0, 1]) self.ax5.plot(vals4) self.ax5.set_xlim(self.xlim) self.ax5.set_xticks(locs) self.ax5.use_sticky_edges = False self.ax5.set_title('Coverage Ratio') self.ax6 = plt.subplot(self.gs[1, 1]) self.ax6.plot(vals5) self.ax6.set_xlim(self.xlim) self.ax6.set_xticks(locs) self.ax6.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax6.use_sticky_edges = False self.ax6.set_title('Block ratio') self.ax7 = plt.subplot(self.gs[2, 1]) self.ax7.plot(vals6) self.ax7.set_xlim(self.xlim) self.ax7.set_xticks(locs) self.ax7.yaxis.set_major_formatter(FormatStrFormatter('%.3f')) self.ax7.use_sticky_edges = False self.ax7.set_title('Handover ratio')修改为一张张输出图片
好的,你可以将这段代码修改为:
```python
def draw_stats(self, vals, vals1, vals2, vals3, vals4, vals5, vals6, save_path):
fig, axs = plt.subplots(4, 2, figsize=(16, 16))
axs[0, 0].plot(vals)
axs[0, 0].set_xlim(self.xlim)
locs = axs[0, 0].get_xticks()
locs[0] = self.xlim[0]
locs[-1] = self.xlim[1]
axs[0, 0].set_xticks(locs)
axs[0, 0].use_sticky_edges = False
axs[0, 0].set_title(f'Connected Clients Ratio')
axs[1, 0].plot(vals1)
axs[1, 0].set_xlim(self.xlim)
axs[1, 0].set_xticks(locs)
axs[1, 0].yaxis.set_major_formatter(FuncFormatter(format_bps))
axs[1, 0].use_sticky_edges = False
axs[1, 0].set_title('Total Bandwidth Usage')
axs[2, 0].plot(vals2)
axs[2, 0].set_xlim(self.xlim)
axs[2, 0].set_xticks(locs)
axs[2, 0].use_sticky_edges = False
axs[2, 0].set_title('Bandwidth Usage Ratio in Slices (Averaged)')
axs[3, 0].plot(vals3)
axs[3, 0].set_xlim(self.xlim)
axs[3, 0].set_xticks(locs)
axs[3, 0].use_sticky_edges = False
axs[3, 0].set_title('Client Count Ratio per Slice')
axs[0, 1].plot(vals4)
axs[0, 1].set_xlim(self.xlim)
axs[0, 1].set_xticks(locs)
axs[0, 1].use_sticky_edges = False
axs[0, 1].set_title('Coverage Ratio')
axs[1, 1].plot(vals5)
axs[1, 1].set_xlim(self.xlim)
axs[1, 1].set_xticks(locs)
axs[1, 1].yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
axs[1, 1].use_sticky_edges = False
axs[1, 1].set_title('Block ratio')
axs[2, 1].plot(vals6)
axs[2, 1].set_xlim(self.xlim)
axs[2, 1].set_xticks(locs)
axs[2, 1].yaxis.set_major_formatter(FormatStrFormatter('%.3f'))
axs[2, 1].use_sticky_edges = False
axs[2, 1].set_title('Handover ratio')
plt.tight_layout()
plt.savefig(save_path)
plt.show()
```
这样就可以一张张输出图片了,你只需要传入一个保存路径参数 `save_path` 即可。
self.ax1 = plt.subplot(self.gs[0, 0]) self.ax1.plot(vals) self.ax1.set_xlim(self.xlim) locs = self.ax1.get_xticks() locs[0] = self.xlim[0] locs[-1] = self.xlim[1] self.ax1.set_xticks(locs) self.ax1.use_sticky_edges = False self.ax1.set_title(f'Connected Clients Ratio') 单独输出
要单独输出这部分代码绘制的图形,可以使用 Matplotlib 库中的 pyplot 子库的 plot() 方法和相应的设置方法来创建和设置图形。例如,下面的代码将创建一个新的图形窗口,并在其中绘制一个线性图:
```
import matplotlib.pyplot as plt
# 创建新的图形窗口
fig = plt.figure()
# 绘制线性图
ax = fig.add_subplot(1, 1, 1)
ax.plot(vals)
ax.set_xlim(xlim)
locs = ax.get_xticks()
locs[0] = xlim[0]
locs[-1] = xlim[1]
ax.set_xticks(locs)
ax.use_sticky_edges = False
ax.set_title('Connected Clients Ratio')
# 显示图形
plt.show()
```
在这个例子中,代码创建了一个新的图形窗口,并使用 add_subplot() 方法创建一个 1x1 的子图,该子图被赋值给变量 ax。接下来,将 vals 序列传递给 plot() 方法来绘制线性图,并使用 set_xlim() 方法和 get_xticks() 方法来设置 x 轴的范围和刻度位置。然后,将 use_sticky_edges 属性设置为 False,这样就可以更好地控制图形的布局。最后,使用 set_title() 方法设置子图的标题。最后,使用 show() 方法显示整个图形。
阅读全文